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This paper revisits the statistical behaviors of Stochastic Gradient De-
scent (SGD) through a novel perspective of time series analysis. Traditional
approaches, mostly treating SGD as Markov chains, focused on convergence
in probabilistic measures like the Wasserstein-2 distance. These approaches
may face challenges when dealing with heavy-tailed noises and can fall short
in handling non-stationary processes due to reliance on fixed initial points. To
address these issues, we interpret the SGD as a nonlinear time series stem-
ming from an iteration of random functions to establish convergence in Eu-
clidean distance, specifically through Geometric Moment Contraction. This
new perspective allows a deeper understanding of step size effects in the SGD
procedure by revealing stationary solutions of derivative processes under mild
conditions. Additionally, we extend this interpretation to the averaged SGD
(ASGD) and provide refined statistical guarantees, including almost sure and
moment convergence allowing heavy-tailed noises, quenched central limit
theorems and invariance principles that hold with any initial points. Based on
these asymptotic results, we introduce an innovative online inference method
for ASGD with enhanced Richardson-Romberg extrapolation. We show that
this estimator achieves the optimal mean squared error (MSE) rate, and we
propose another bias-reduced variant. Numerical experiments demonstrate
that our proposed empirical confidence intervals exhibit asymptotically pre-
cise coverage probabilities.

1. Introduction. We consider the optimization problem posed by a strongly convex ob-
jective function G : Rd 7→R, defined as below,

(1) θ∗ = arg min
θ∈Rd

G(θ), where G(θ) = EX∼Π[g(θ,X)].

In (1), g(θ,X) represents the noise-perturbed measurement of G(θ) and X is a random vari-
able sampled from the distribution Π. This optimization challenge has garnered tremendous
attention across diverse fields, encompassing statistical learning [5, 8, 49, 53], optimization
[24, 41, 43], and stochastic approximation [14, 31, 46, 54].

Traditional deterministic optimization techniques often come with high computational
costs, making them less feasible for large-scale problems or streaming datasets. To tackle
these issues, various online methods have been proposed. The Robbins-Monro algorithm
[27, 47], also known as Stochastic Gradient Descent (SGD), was among the first and has be-
come the most widely used method due to its simplicity and efficiency. Specifically, given a
starting point θ0 ∈Rd, the k-th iteration of the SGD algorithm can be defined by the recursive
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procedure

(2) θk(γ) = θk−1(γ)− γ · ∇g(θk−1(γ),Xk), k = 1,2, . . . ,

where X1,X2, . . . are independent and identically distributed (i.i.d.) observations sampled
from some distribution Π, γ > 0 is a constant step size, ∇g(θ,X) is a stochastic gradient
vector of the objective function g(θ,X) with respect to the first argument θ ∈ Rd. We shall
view θk(γ) as a random function of γ and θ0 and it depends onX1, . . . ,Xk. The primary goal
of this paper is to provide a systematic asymptotic theory for {θk(γ)}k∈N in the framework
of iterative random functions.

The convergence of the SGD process has been widely investigated, such as in the pio-
neering work by [4, 16, 51] and the subsequent studies [17, 20, 32, 35, 36, 48, 58]. Many
researchers interpreted the SGD process {θk(γ)}k∈N as a homogeneous Markov chain. For
example, [44] was among the first who investigated the stationary solutions of the constant
step-size SGD, [14] highlighted convergence of the constant step-size SGD to a unique sta-
tionary distribution πγ in the Wasserstein-2 distance, and more recently, [38] derived high-
confidence estimation bounds. Note that most existing works established the convergence
of {θk(γ)}k∈N to πγ in terms of probabilistic distances, such as the Wasserstein-2 distance
[14, 38]. However, it can be quite challenging to generalize this type of measures to the cases
with heavy-tailed noises, since their applied tools (e.g. Markov chain theory) require finite
p-th central moments for p ≥ 2 [38, 62]. Further, even in the case with finite variances, the
convergence in a probabilistic measure is less effective in deriving an asymptotic theory for
the non-stationary SGD process {θk(γ)}k∈N.

To bridge these gaps, this paper puts the SGD in a nonlinear time series framework, specif-
ically by conceptualizing the SGD process as an iterated random function [12, 60]. The new
insight enables us to establish the geometric moment contraction (GMC) for the SGD, which
then can be used to prove its convergence in the Euclidean norm. In particular, we show that
for any two SGD sequences {θk(γ)}k∈N and {θ†k(γ)}k∈N from recursion (2) with different
initial points θ0(γ) = θ0, θ

†
0(γ) = θ†0 ∈Rd, respectively, if 0< γ < γ(p),

(3) ∥θk(γ)− θ†k(γ)∥p :=
(
E|θk(γ)− θ†k(γ)|

p
)1/p ≤ ρk|θ0 − θ†0|, p > 1,

where γ(p)> 0 and ρ= ργ,p ∈ (0,1) are specified in Theorem 2.2, and | · | denotes the Eu-
clidean norm on Rd. Such convergence ensures the existence and uniqueness of the stationary
distribution πγ . It is worth noticing that, in contrast to the theory for SGD convergence in the
Wasserstein-2 distance, the GMC generalizes the analysis of SGD from p ≥ 2 to all p > 1,
strictly relaxing the moment assumptions on the noise in recent literature. Additionally, it
allows to handle the non-stationarity of the SGD process due to fixed initial points. Thus,
asymptotic results can be formulated for the complete observed SGD process starting from
the first iteration.

In principle, our results for a constant step size γ can be extended to decaying step sizes
γn ≍ n−β for some 1/2 < β < 1. We shall focus on the constant step size in this paper,
since it is a popular choice in practice [2]. It can benefit from faster convergence in over-
parametrized situations [37, 40, 52, 57] and circumvent the problem of finding a suitable
decay rate via β. Note that the SGD process with a constant step size does not converge,
but oscillates around the mean of the stationary distribution with an average magnitude of
γ1/2 [44]. We provide a sharp bound for γ that ensures the contraction of SGD, offering
valuable guidance for practical step-size selection. To gain a deeper insight into the variations
in SGD as influenced by different step sizes, we use the GMC to show the existence of
the first and second stationary derivative processes with respect to γ, i.e., {∂γθk(γ)}k∈N
and {∂2γθk(γ)}k∈N, under some mild conditions. Derivative processes are powerful tools in
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measuring the deviation of a non-stationary sequence from stationarity; see for example [9,
10]. Motivated by this, we discuss the potential usage of derivative processes towards an
explicit non-asymptotic expansion of the SGD process in terms of γ.

Besides the convergence and error margins of SGD-based estimators, it is also important to
quantify the uncertainty of these point estimators by providing confidence intervals (CI). For
example, [18, 19, 63] employed bootstrap strategies to create confidence intervals; [34, 56]
alternated iterations of the SGD algorithm, drawing inferences from a non-asymptotic per-
spective; [6] introduced a cutting-edge class of regularized dual averaging to quantify un-
certainties for online sparse methodologies. In this paper, we propose an online inference
method for the well-known averaged SGD (ASGD), also referred to as Polyak-Ruppert aver-
aging [45, 50]. ASGD can effectively reduce noise impact and has an asymptotically normal
limiting distribution. Specifically, given an initial point θ0 ∈Rd, define the n-th ASGD iterate
by

(4) θ̄n(γ) =
1

n

n∑
k=1

θk(γ), n≥ 1.

Under some regularity conditions, {θ̄n(γ)}n∈N converges at rate OP(n
−1/2) to some point

[11, 21]. See also other variants of ASGD formulations in [13, 15, 25, 33, 39]. However, since
{θ̄n(γ)}n∈N is non-stationary due to the fixed initial point θ0, its asymptotics heavily rely on
the distance in which the SGD convergence is stated. For instance, to obtain Lp-convergence
of θ̄k(γ) from a Wasserstein-type convergence result for p ≥ 1, one needs that the 2p-th
moment of ∇g(θ,X) exists (see Remark 3), which seems to be an unnecessarily strong con-
dition. To close this gap, we establish the asymptotic stationarity of ASGD using the GMC
property and provide a quenched central limit theorem (CLT). Roughly speaking, for any
arbitrary initial point θ0 = v0 ∈Rd, we can achieve the following asymptotic normality

(5) Pv0
(√
n
(
θ̄n(γ)− θ∗∞(γ)

)
∈A

)
→ P

(
N(0,Σ◦(γ)) ∈A

)
, for measurable A⊂Rd,

as n→∞, where Σ◦(γ) denotes the long-run covariance matrix

(6) Σ◦(γ) =

∞∑
k=−∞

cov(θ◦0(γ), θ
◦
k(γ))

and θ◦k(γ)∼ πγ is the stationary SGD sequence following recursion (2) with

(7) θ∗∞(γ) = lim
k→∞

E[θk(γ)] = E[θ◦1(γ)] =
∫
uπγ(du).

This quenched CLT is particularly relevant and useful in practice because varying initial
points are frequently employed in SGD, and a CLT formulated only for the stationary SGD
sequence is insufficient for statistical inference. We can further establish an invariance prin-
ciple (also known as, a functional CLT) for the process convergence, that is,

(8) n−1/2
{ ⌊nu⌋∑
k=1

(
θk(γ)− θ∗∞(γ)

)
,0≤ u≤ 1

}
⇒{Σ◦(γ)1/2B(u),0≤ u≤ 1},

as n→∞, where B(u) is a standard d-dimensional Brownian motion. The weak convergence
in (8) is also quenched, which means (8) is true for all initial points θ0 ∈Rd.

Before constructing confidence intervals for the ASGD, we shall note that the ASGD with
a constant step size γ is biased. Therefore, we adopt a Richardson-Romberg extrapolation
[55], firstly introduced to SGD by [14] to reduce the bias. We provide an enhanced non-
asymptotic bias expansion of θ∗∞(γ) in terms of γ, i.e.,

θ∗∞(γ)− θ∗ = γ∆1 + γ2∆2 +R(3)
γ ,
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where ∆1,∆2 are independent of γ, and the remaining term satisfies ∥R(3)
γ ∥p ≤ Cγ5/2 for

some constant C > 0 independent of γ. By this expansion, we can run three parallel SGD
sequences θk(a1γ), θk(a2γ) and θk(a3γ), k ∈N, with three different step sizes a1γ, a2γ and
a3γ, where the constants a1, a2, a3 > 0 are explicitly provided. Then, we define an extrapo-
lated ASGD estimator as

(9) θ̂n(γ) = b1θ̄n(a1γ) + b2θ̄n(a2γ) + b3θ̄n(a3γ),

with some weighting constants b1, b2, b3. By choosing the constants ai, bi (i = 1,2,3) suit-
ably, we can achieve a cancellation of the bias components γ∆1, γ

2∆2 (the detailed expres-
sions are deferred to (28)).

Subsequently, we propose a novel online inference method for θ̂n(γ) by a blocking-based
online estimator of the long-run covariance matrix Σ(γ). The empirical CI is detailed in (50).
Compared to other online inference methods such as [7, 64], we show that our proposed
online estimator can achieve the optimal mean square error (MSE) rate in case of dependence
(see Remark 5). Moreover, we introduce another variant of the online estimator to reduce the
bias due to the dependency between SGD iterates. The bias-reduced CI exhibits more precise
coverage probabilities in numerical experiments.

Contributions. This study introduces technical tools in nonlinear time series to the machine
learning community by providing a new interpretation for the SGD process. Our primary
contributions are three-fold: (i) conceptualize the evolution of SGD as an iterative random
function and establish its convergence in the Euclidean norm with sharp conditions on γ,
effectively addressing the challenges in heavy-tails and non-stationarity (Section 2); (ii) pro-
vide the quenched limiting distributions for the (extrapolated) ASGD with arbitrary initial
points, facilitating a bias-reduced online inference method with optimal MSE (Sections 3 &
4); (iii) first time analyze step-size impacts on the SGD process by using derivative processes,
which can be of independent interests (Section 5).

Notation. For a vector v = (v1, . . . , vd)
⊤ ∈Rd and q > 0, we denote |v|q = (

∑d
i=1 |vi|q)1/q

and |v|= |v|2. For a matrixA, denote the Frobenius norm by |A|2. Denote the identity matrix
in Rd×d by Id and the vector (1, . . . ,1)⊤ ∈Rd by 1d. For any s > 0 and a random vector X ,
we say X ∈ Ls if ∥X∥s = (E|X|s2)1/s <∞. For two positive number sequences (an) and
(bn), we say an =O(bn) or an ≲ bn (resp. an ≍ bn) if there existsC > 0 such that an/bn ≤C
(resp. 1/C ≤ an/bn ≤ C) for all large n, and write an = o(bn) or an ≪ bn if an/bn → 0 as
n→∞. Let (Xn) and (Yn) be two sequences of random variables. Write Xn = oP(Yn) if
Xn/Yn → 0 in probability as n→∞. Consider the finite dimensional Euclidean space Rd
embedded with the canonical inner product ⟨·, ·⟩. For two real vector spaces F,G⊂ Rd, we
denote the tensor product of F and G by F ⊗G. For each d-dimensional vector x ∈ F and
y ∈G, we denote the tensor product of x and y by x⊗ y ∈ F ⊗G, and denote the k-th tensor
power of x by x⊗k ∈ F⊗k, where F⊗k is the k-th tensor power of F .

2. Geometric Moment Contraction. Note that the SGD sequence {θk(γ)}k∈N in (2) is
a Markov chain because θk(γ) only depends on its past through θk−1(γ). Since {θk(γ)}k∈N
is typically non-stationary when the initial point θ0 ∈ Rd is fixed, we are interested in the
existence of stationary distribution of {θk(γ)}k∈N and the related convergence rate of θk(γ)
towards this stationary distribution. The recursive form of the SGD imposes a complicated de-
pendency structure on {θk(γ)}k∈N, making it challenging to establish an asymptotic theory.
To provide refined asymptotics, tools from iterated random functions [12, 60] are applied.

First, the geometric moment contracting property (see Definition 2.1) of the recursive func-
tion (2) is introduced. According to [60], this property enables us to establish the weak con-
vergence of θk(γ) to a unique stationary distribution πγ ∈ Lp(Rd), for some p ≥ 1, that is
θk(γ) ⇒ πγ , as k→∞, at an exponential convergence rate (see Theorem 2.2). Unlike the
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(a) Linear regression. (b) Logistic regression.

Fig 1: A simulation example for the convergence trace of SGD estimates relative to the step
numbers, where the optimum θ∗ = 1 and the constant step size γ = 0.05. The total numbers
of steps are 103 and 104 for linear regression and logistic regression, respectively.

Wasserstein distance utilized in previous literature such as [14], the geometric moment con-
traction directly provides convergence on the moments ∥θk(γ) − θ∗∞(γ)∥p with p > 1, as
k→∞. This property substantially facilitates the construction of an asymptotic theory for
SGD iterates and it offers a natural base from which limiting distributions and concentration
inequalities related to θk(γ) can be derived.

DEFINITION 2.1 (Geometric-moment contraction). Let Xi,X
′
j , be i.i.d. random vari-

ables, i, j ∈ Z. Consider the causal process

(10) Yk =H(Xk, . . . ,X1,X0,X−1, . . .),

where H(·) is a measurable function so that Yk is well-defined and E|Yk|p <∞, p≥ 1. We
say that Yk is geometric-moment contracting (GMC) if there exist some constants C > 0 and
0< r < 1 such that for all k ∈N,

(11) E|Yk − Y †
k |
p ≤Crk, where Y †

k =H(Xk, . . . ,X1,X
′
0,X

′
−1, . . .)

is a coupled version of Yk with Xj , j ≤ 0, in the latter replaced by i.i.d. random variables
X ′
j , j ≤ 0, which are also independent of Xi, i ∈ Z.

In this paper, we shall show that under suitable conditions, GMC as defined above holds
for Yk = θk(γ) with θk(γ) generated from the SGD algorithm in (2) (see Theorem 2.2). We
emphasize that we can allow infinite variance for Yk, which was rarely investigated in the
literature.

REMARK 1 (Exponential convergence of the SGD iterates). To motivate the geometric-
moment contraction for the SGD iterates, we shall first present a simulation example to show
that for varied initial points θ0 ∈ R, the SGD iterates {θk(γ)}k∈N forget the initial point ex-
ponentially fast for well-conditioned problems such as strongly convex objectives. In Figure
1, we show the convergence trace of SGD estimates for the least-square loss of the linear
regression and the negative log-likelihood loss of the penalized logistic regression. We defer
the details of the synthetic data to Section 6. As shown in Figure 1, both models demonstrate
that SGD iterations converge to the global minimum at an exponential rate across various ini-
tial points. This inspires us to directly verify the SGD convergence in the Euclidean distance
beyond probabilistic measures (e.g. Wasserstein distance), that is, to establish the geometric
moment contraction for the SGD sequence.
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By the example in Remark 1 and other literature on the SGD convergence rates, one can
see that the Markov chain {θk(γ)}k≥1 converges exponentially fast for different constant step
sizes, and the initial conditions (i.e. arbitrary starting points θ0 and θ′0) are forgotten exponen-
tially quickly. However, all the existing literature only provides the theoretical convergence
in terms of probability measures such as the Wasserstein distance, while we show that the
SGD iterates {θk(γ)}k≥1 satisfy the GMC property in (11). Based on this convergence in the
Euclidean distance, we can further provide refined asymptotic properties of the SGD iterates
in the subsequent sections.

Following the framework of iterated random functions [12, 60], we define

(12) F :Rd ×R→Rd, (θ,X) 7→ FX(θ) = θ− γ · ∇g(θ,X),

which is a measurable function. Let θ0, θ
†
0 ∈ Rd be some given initial points independent of

X1, . . . ,Xn. Then, we can write the SGD iterates in (2) based on θ0 or θ†0, respectively, as

(13) θk = FXk
(θk−1) = FXk

◦ · · · ◦ FX1
(θ0) and θ†k = FXk

◦ · · · ◦ FX1
(θ†0).

We shall introduce some conditions on convexity and smoothness.

ASSUMPTION 1 (µ-strong convexity). Let m(θ) = E[∇g(θ,X)]. Assume that for any
x ∈R, θ 7→ g(θ,x) is a continuously differentiable function. Additionally, suppose that there
exists a constant µ > 0 such that for all θ, θ′ ∈Rd,

⟨m(θ)−m(θ′), θ− θ′⟩ ≥ µ|θ− θ′|2.

ASSUMPTION 2 (Stochastic Lipschitz continuity). Let p > 1. (i) For θ∗ defined in (1),
assume that ∥∇g(θ∗,X)∥p <∞; (ii) Assume that there exists some constant Lp > 0 such
that for all θ, θ′ ∈Rd,

∥∇g(θ,X)−∇g(θ′,X)∥p ≤ Lp|θ− θ′|.

Assumption 1 is equivalent to the following conditions that are commonly seen in the
relevant literature [14, 23]: (a) if g(θ,X) is twice differentiable, then the Hessian matrix
E∇2g(θ,X) is positive definite with smallest eigenvalue of E∇2g(θ,X) larger than µ; (b)
for any t ∈ (0,1),

m(tθ1 + (1− t)θ2)≤ tm(θ1) + (1− t)m(θ2)− t(1− t)(µ/2)|θ1 − θ2|2;

and (c) m(θ1)≥m(θ2) +∇m(θ1)
⊤(θ1 − θ2) + (µ/2)|θ1 − θ2|2. Assumption 2(i) is a mild

condition on the p-th moment of the stochastic gradient. Assumption 2(ii) requires stochas-
tic Lipschitz continuity of the gradient, which also indicates that the function m(θ) is L1-
smooth, by noting that ∥ · ∥p ≥ ∥ · ∥1 = E| · |. Similar assumptions have been adopted in the
literature on SGD asymptotics; see for example [7] on parameter estimation and inference
with the SGD. It is noteworthy that Assumption 2 only requires p > 1, which allows for in-
finite variance in random noises. This is a nontrivial extension that generalizes the previous
studies which supposed p≥ 2 to the cases where 1< p< 2.

Theorem 2.2 below implies that for sufficiently small γ > 0, we have the weak conver-
gence

(14) θk(γ)⇒ πγ as k→∞,

where πγ is the stationary distribution. We define the boundary γ(p) > 0 as the root to the
equation

(15) (1 + γLp)
p = 1+ pγLp + pµγ if p≥ 2
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and

(16) γ(p) = (pµ/(22−pLpp))
1/(p−1) if 1< p< 2.

When p≥ 2, since the function g(u) = ((1 + u)p − 1− pu)/u= p
∫ 1
0 ((1 + ut)p−1 − 1)dt is

strictly increasing in u ∈ (0,∞), limu↓0 g(u) = 0, and limu↑∞ g(u) =∞, there is a unique
root u = u(p) to the equation g(u) = pµ/Lp, which implies that the root γ(p) to equation
(15) is u(p)/Lp. A particularly interesting special case is p = 2. In this case both (15) and
(16) with p ↑ 2 yield γ(2) = 2µ/L2

2, suggesting a smooth transition at the borderline p= 2,
and a central limit theorem is given in Theorem 3.2.

THEOREM 2.2 (Geometric moment contraction). Let p > 1. Recall (15) and (16) for
γ(p). Suppose that Assumptions 1 and 2 hold and 0< γ < γ(p). Then, FX(θ) defined in (12)
satisfies a geometric moment contraction, that is, for all θ, θ′ ∈Rd,

(17) ∥FX(θ)− FX(θ
′)∥p ≤ ρ|θ− θ′|,

where

ρ= ργ,p and ρpγ,p =

{
1− pµγ + γp22−pLpp < 1, if 1< p< 2;

(1 + γLp)
p − pγLp − pµγ < 1, if p≥ 2.

(18)

Consequently, for any initial point θ0 ∈ Rd, there exists a unique stationary distribution πγ
which does not depend on θ0, such that θk(γ)⇒ πγ as k→∞, and the distribution πγ has a
finite p-th moment

∫
|u|pπγ(du)<∞. Additionally, let θ◦0(γ)∼ πγ follow the stationary dis-

tribution and define θ◦k(γ), k ≥ 1, according to the iteration (2). Then the following geometric
moment contraction holds:

(19) ∥θk(γ)− θ◦k(γ)∥p ≤ ρk∥θ0 − θ◦0(γ)∥p = ρk
[∫

|θ0 − u|pπγ(du)
]1/p

.

Theorem 2.2 provides an explicit sufficient condition for the existence of the p-th moment
of the stationary distribution based on the step size γ. In general, the existence of higher-
order moments asks for smaller values of γ. The geometric contraction (19) gives an explicit
rate for the coupling of θk(γ) and θ◦k(γ) and it shows that the initial point θ0 is forgotten
exponentially quickly. The latter property will be used in our quenched limit theorems in
Section 3 which concerns the asymptotic properties for partial sums of θk(γ) with any initial
point θ0, a paradigm which is highly relevant in the study of SGD.

Note that to establish the convergence of the SGD to the stationary distribution πγ in terms
of the Wasserstein-2 distance, it is usually assumed that the gradient ∇g(θ,X) is almost
surely L-co-coercive (see for example Assumption A4(p) in [14]). However, this assumption
is stronger than our Assumption 2 since it poses constraints beyond Lipschitz continuity di-
rectly on ∇g. For example, it requires the observed data to be a.s. bounded or with bounded
kurtosis. We shall consider the following linear model as an example to show that our condi-
tions are less restrictive.

REMARK 2 (Range of γ in linear regression). Let Xk = (Zk, Yk) ∈ Rd × R, k ≥ 1, be
i.i.d. random samples following the linear regression model Yk = Z⊤

k θ
∗ + ϵk, where θ∗ ∈Rd

is the population parameter vector of interest and ϵk ∈R, k ≥ 1, are i.i.d. random noise inde-
pendent of {Zk}k≥1. Our Assumption 1 and Assumption 2 hold with µ= λmin{E(Z1Z

⊤
1 )}

and L2 = supδ∈Rd:|δ|=1 ∥Z1Z
⊤
1 δ∥2, respectively, where λmin{·} denotes the smallest eigen-

value. Consequently, Theorem 2.2 ensures the GMC of the sequence {θk(γ)}k≥1 as long
as

0< γ <
2λmin{E(Z1Z

⊤
1 )}

supδ∈Rd:|δ|=1 ∥Z1Z⊤
1 δ∥22

.(20)
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It is worth mentioning that the range above for γ can not be improved in general. To see
this, suppose now d = 1, θ∗ = 0, and E(Z4

1 ) = ϖE(Z2
1 ) for some 0 < ϖ <∞. Then (20)

reduces to 0< γ < 2/ϖ. In particular, for any γ ≥ 2/ϖ, the second moment of the stationary
distribution πγ is no longer finite. Assume otherwise, the second moment of the asymptotic
distribution πγ is finite for γ ≥ 2/ϖ, that is

ς2 :=

∫
u2πγ(du)<∞.

Then, in view of (2), for any γ ≥ 2/ϖ, we have

ς2 = ς2E(1− 2γZ2
1 + γ2Z4

1 ) + γ2E(Z2
1 )E(ϵ21)≥ ς2 + γ2E(Z2

1 )E(ϵ21)> ς2,

which leads to a contradiction.

REMARK 3 (Extension to heavy-tailed noises). Note that by providing the convergence
of SGD in terms of the Wasserstein-2 distance, one requires at least the 2p-th finite moment to
bound the distance E|θ̄k(γ)− θ∗∞|p, and the moment contraction can only be established for
p≥ 2. The reason is that the martingale decomposition is adopted in the previous literature,
that is

FX(θ) = θ− γm(θ) + γD(θ,X),(21)

where

(22) m(θ) = E[∇g(θ,X)], D(θ,X) =m(θ)−∇g(θ,X).

This decomposition may lead to a loose upper bound of ∥FX(θ)− FX(θ
′)∥p when applying

the Cauchy-Schwarz inequality twice. This type of condition on higher-order finite moments
(at least fourth moment) can be too restricted, especially if the input data has heavy tails or
are influenced by outliers. Differently, we address this issue by directly providing the bound
for ∥FX(θ) − FX(θ

′)∥p without the martingale decomposition in (21). As such, we only
require the existence of p-th moment instead of 2p for the GMC property of the SGD, and
the moment contraction holds for all p > 1. This improvement can accommodate a wider
variety of distributions of the observations, even those with an infinite variance.

The GMC property in Theorem 2.2 characterizes the dependencies of the SGD process
{θk(γ)}k∈N on the initial conditions θ0 ∈ Rd, which decays exponentially fast as the step
number k→∞. This theoretical guarantee can be especially useful in practical applications,
since SGD is often implemented with a variety of starting points θ0 to enhance the robustness
and effectiveness of the optimization process. Based on GMC, we shall further introduce the
convergence for the ASGD sequence {θ̄n(γ)}n∈N in Section 3. These convergence results
shall facilitate more refined limiting behaviour of ASGD, such as the quenched central limit
theorems, which provides a fundamental base for the statistical inference of ASGD estimates
with any arbitrary initial conditions (see Section 4).

3. Asymptotic Theory. In this section, we first introduce the asymptotic properties of
the ASGD estimate θ̄n(γ) defined in (4), for all p > 1, by using the geometric-moment
contraction provided in Theorem 2.2. In particular, we give a bound on the moment
∥θ̄n(γ) − θ∗∞(γ)∥p and provide an almost sure convergence result, for all p > 1. Then,
for p ≥ 2, we will provide the quenched central limit theorem for θ̄n(γ) and establish the
quenched invariance principle with p > 2.
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3.1. Quenched Central Limit Theorem. We shall start with the moment convergence and
almost sure convergence of the ASGD estimate θ̄n(γ).

THEOREM 3.1 (Convergence of the ASGD). Let p > 1. Recall θ∗∞(γ) defined in (7).
Under the conditions of Theorem 2.2, we have the p-th order moment convergence

∥θ̄n(γ)− θ∗∞(γ)∥p =O(n1/(p∧2)−1),

and the following almost sure convergence:

(i) for 1< p< 2, |θ̄n(γ)− θ∗∞(γ)|= oa.s.(n
1/p−1);

(ii) for p≥ 2, |θ̄n(γ)− θ∗∞(γ)|=Oa.s.
(
(n−1 log log(n))1/2

)
.

The above convergence results also hold for the sample average θ̄◦n(γ) = n−1
∑n

k=1 θ
◦
k(γ) of

the stationary SGD process {θ◦k(γ)}k∈N.

Next, we shall show the (quenched) central limit theorem for this Markov chain, that is,
for any arbitrary initial point θ0 ∈ Rd, the central limit theorem holds for θ̄n(γ). Since the
SGD sequence with an arbitrary starting point is a non-stationary Markov chain, we need to
derive an approximation by a stationary process by following (19) of Theorem 2.2, which is
the key to the proof of the quenched limit theorems.

THEOREM 3.2 (Quenched central limit theorem). For the recursion (2) with i.i.d. sam-
ples Xi, i ≥ 1, suppose that Assumptions 1 and 2 hold with some p ≥ 2. Let γ1, . . . , γℓ ∈
(0, 2µ/L2

2) be ℓ≥ 1 different step sizes and

(23) S◦
n =

n∑
k=1

ε◦k, where ε◦k = vec(θ◦k(γ1)− θ∗∞(γ1), . . . , θ
◦
k(γℓ)− θ∗∞(γℓ)),

where vec(v1, . . . , vl) = (v⊤1 , . . . , v
⊤
l )

⊤. Let Σ◦ =
∑∞

k=−∞ cov(ε◦0, ε
◦
k) be the long run co-

variance matrix of the stationary (dℓ)-dimensional vector process (ε◦k)k∈Z. Similarly we de-
fine Sn as S◦

n with θ◦k(γ) in the latter replaced by θk(γ). Then n−1/2S◦
n ⇒N(0,Σ◦), and for

any arbitrary initial point vec(θ0(γ1), . . . , θ0(γℓ)) ∈Rdl, n−1/2Sn ⇒N(0,Σ◦).

Based on the asymptotic normality results of the ASGD provided above, we can construct
asymptotically valid confidence intervals for the model parameter θ. To facilitate the use
of the result in practice, we propose a new online inference method in Section 4 for the
estimation of the long-run covariance matrix Σ(γ) of the bias-reduced ASGD (see (30)).
The long run covariance matrix Σ◦ of the stationary SGD in Theorem 3.2 can be similarly
estimated. Two concrete examples for constructing confidence intervals are provided on a
linear regression model and a logistic regression model; see Section 6 for more details.

3.2. Quenched Invariance Principles. The seminal work of Komlós, Major, and Tus-
nády [29, 30], presents an optimal Wiener approximation (KMT approximation) for the par-
tial sums of i.i.d. random vectors. Their findings have become indispensable tools in both
probability and statistics. [26] extends this result to the dependent case, followed by [3] who
further generalized the KMT approximation to the multiple time series. Building on these
previous works, in this section, we adapt the KMT approximation towards the recursive pro-
cedures, specifically by providing an invariance principle and its quenched version for the
vector-valued ASGD processes {θ̄k(γ)}k∈N.

The rigorous statement of the quenched invariance principle is as follows.
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THEOREM 3.3 (Quenched invariance principle). Suppose that Assumptions 1 and 2 hold
with some p > 2. Recall Theorem 3.2 for Sn and S◦

n with step sizes γ1, . . . , γℓ ∈ (0, γ(p)).
Then there exists a (richer) probability space (Ωc,Ac,Pc) on which we can define random
vectors εck ∈ Rdl with the partial sum process Sci =

∑i
k=1 ε

c
k, and a Gaussian process Gci =∑i

k=1Z
c
k, where {Zck}k≥1 are independent Gaussian N(0,Idl) random vectors, such that

(Sci )1≤i≤n
D
= (S◦

i )1≤i≤n and

(24) max
i≤n

∣∣Sci −Σ◦1/2Gci
∣∣= oP(n

1/p), in (Ωc,Ac,Pc).

Additionally, the above approximation also holds for Sn with any arbitrary initial point
vec(θ0(γ1), . . . , θ0(γℓ)) ∈Rdl.

With the functional CLT provided above, we can establish the Gaussian approximation
for the asymptotic distribution of the entire path of the SGD estimates over iterations, not
just their final or averaged values. For example, instead of a single confidence interval for
the final estimate or at some specific step k, the FCLT enables the construction of sequential
confidence intervals that cover the entire trajectory of the SGD estimates.

4. Online Inference. In this section, we propose an online statistical inference method
for the population parameter θ∗ based on the SGD algorithm [7]. To this end, we shall first
provide an explicit non-asymptotic bias expansion for the ASGD estimates in terms of the
step size γ (see Theorem 4.1) and introduce a Richardson-Romberg extrapolated ASGD es-
timator utilizing three different step sizes, which effectively cancels out the bias term on the
order of γ and γ2.

4.1. Richardson-Romberg Extrapolation. In the context of the SGD, the iterates can ex-
hibit a bias due to the constant step size when approaching the optimal solution. This bias
arises because the noisy gradient estimates do not average out entirely, even if the iterations
are performed infinitely often. To resolve this issue, [14] first time adopted the Richardson-
Romberg extrapolation, which is a technique primarily used in numerical integration to im-
prove the accuracy of a solution by exploiting the knowledge of its error’s rate of conver-
gence. For example, [23] provides a general bias expansion of Richardson-Romberg extrap-
olated estimators under mixing conditions. In this section, we establish a bias expansion to
cancel out both γ and γ2 terms in the extrapolated ASGD estimator expansion.

First, we provide a theoretical foundation, specifically by giving a non-asymptotic ex-
pansion of the bias between the ASGD solution in (4) and the global minimum θ∗, that is,
E(θ̄k(γ)− θ∗). This bias can be further decomposed into two parts as follows:

(25) E[θ̄k(γ)− θ∗] = E[θ̄k(γ)− θ◦k(γ)] +E[θ◦k(γ)− θ∗].

Here θ◦k(γ) has the stationary distribution πγ for all k ∈ N. The first part E[θ̄k(γ)− θ◦k(γ)]
converges to zero at a rate of O(1/k) as k → ∞ by applying the GMC property shown
in Theorem 2.2. Moreover, we provide an expansion of the second part E[θ̄◦k(γ) − θ∗] for
small step sizes γ > 0, with an error of the order of O(γ5/2). In addition, we shall show an
explicit formula for the coefficients of γ and γ2 in the expansion. To achieve these goals, the
following assumption is needed.

ASSUMPTION 3 (Bounded variation of derivatives). Assume that the objective function
g(θ,X) is six times continuously differentiable with respect to θ. Moreover, for p≥ 2, there
exists some positive constantMp <∞ such that ∥g(j)(θ∗,X)∥p ≤Mp for any j ∈ {2, . . . ,6}.
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To establish a refined non-asymptotic bias expansion in (25) in terms of γ, we further de-
velop the residual term derived by Theorem 4 in [14]. To this end, the smoothness condition
we pose in Assumption 3 requires the existence of the sixth order derivative of the objective
function g(θ,x), which is slightly higher than the one in [14]. However, it is worth notic-
ing that despite the similar methodology we used in this study compared to existing works,
which is mainly based on the Taylor expansion of the iterative function FX(θ) around the
global optimum θ∗, we also provide insights into another potential approach that relies on
the derivative processes of the SGD iterates with respect to γ. We refer to a detailed discus-
sion in Section 5.

THEOREM 4.1 (Bias expansion). Recall the tensor product denoted by ⊗. Suppose
that Assumptions 1–3 hold and that the constant step size γ > 0 is small enough. Recall
m(θ) = E[∇g(θ,X)]. Denote the Hessian matrix and the third-order tensor by M1 ∈ Rd×d
and M2 ∈Rd×d×d respectively with

M1 =∇m(θ∗)⊗ Id + Id ⊗∇m(θ∗),

M2 =∇m(θ∗)⊗ Id ⊗ Id + Id ⊗∇m(θ∗)⊗ Id + Id ⊗ Id ⊗∇m(θ∗).

Then, M1 and M2 are invertible. Also, for the SGD iterates {θk(γ)}k∈N in (2) with any
initial point θ0 ∈Rd, we have

θ∗∞(γ)− θ∗ = γ ·∆1 + γ2 ·∆2 +R(3)
γ ,(26)

where ∆1 and ∆2 are two vectors in Rd with

∆1 = [∇m(θ∗)]−1∇2m(θ∗)M−1
1 E

{
[∇2g(θ∗,Xn)]

⊗2
}
,

∆2 = [∇m(θ∗)]−1
(
∇3m(θ∗)/3

)
M−1

2 E
{
[∇2g(θ∗,Xn)]

⊗3
}
,

which are both independent of γ, and R(3)
γ ∈ Rd with ∥R(3)

γ ∥p ≤ Cγ5/2 for some constant
C > 0 independent of γ.

Now we proceed with the basic idea of the Richardson-Romberg extrapolation in SGD.
In particular, we compute the trajectory of the SGD at multiple step-sizes and then combine
these trajectories in a specific manner to produce a new, bias-reduced trajectory. This ap-
proach allows for a more accurate convergence to the solution, leveraging the information
from multiple step-sizes to correct the inherent bias in constant step-size SGD. Specifically,
we consider three different constant step sizes a1γ, a2γ and a3γ with γ > 0 and the con-
stants a1, a2, a3 > 0. Then, we have three sequences of stochastic gradient descent iterates
{θk(a1γ)}k∈N, {θk(a2γ)}k∈N and {θk(a3γ)}k∈N respectively, with the initial point θ0 ∈Rd.
Motivated by Theorem 4.1, we propose to estimate θ∗ via the Richardson-Romberg extrapo-
lation as follows [14, 22],

θ̂n(γ) = b1θ̄n(a1γ) + b2θ̄n(a2γ) + b3θ̄n(a3γ),(27)

where

b1 =
a2a3

a21 − a1a2 − a1a3 + a2a3
,

b2 =− a1a3
a1a2 − a1a3 − a22 + a2a3

,

b3 =
a1a2

a1a2 − a1a3 − a2a3 + a23
.(28)
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One can see that the constants b1, b2, b3 defined above satisfy b1+ b2+ b3 = 1, a1b1+a2b2+
a3b3 = 0 and a21b1 + a22b2 + a23b3 = 0, which leads to a cancellation of the terms γ∆1 and
γ2∆2 in (26).

Before presenting the asymptotic distribution of θ̂n(γ), we shall introduce some basic
definitions and notation. Denote the stationary SGD sequence with the step size aγ by
{θ◦k(aγ)}k∈Z, for some constant a > 0, which follows the stationary distribution πaγ . More-
over, for the same constants ai, bi, i= 1,2,3, specified in (27), we define the stationary pro-
cess {ϑ◦k(γ)}k∈Z, where

ϑ◦k(γ) = b1θ
◦
k(a1γ) + b2θ

◦
k(a2γ) + b3θ

◦
k(a3γ).(29)

Consequently, the long run covariance matrix of the stationary sequence {ϑ◦k(γ)}k∈Z is given
by

Σ(γ) =
∑
k∈Z

cov{ϑ◦0(γ), ϑ◦k(γ)}.(30)

COROLLARY 4.2 (Quenched CLT for the extrapolated ASGD). Consider the extrapo-
lated ASGD estimator θ̂n(γ) in (27). Under the conditions of Theorem 3.2, for any initial
point θ0 ∈Rd,

√
n[θ̂n(γ)− ϑ∗∞(γ)]⇒N(0,Σ(γ)), as n→∞

where the center ϑ∗∞(γ) = b1θ
∗
∞(a1γ) + b2θ

∗
∞(a2γ) + b3θ

∗
∞(a3γ) with θ∗∞(γ) defined in (7)

and the long-run covariance matrix Σ(γ) is defined in (30).

As a direct application of Theorem 3.2, by the Crámer-Wold device, the central limit the-
orem also holds for the Richardson-Romberg bias corrected estimate (27) as stated in Corol-
lary 4.2, which is a linear combination of θ◦k(γs), k ∈N, s= 1, . . . , ℓ.

REMARK 4 (Refined bias expansion). We establish the theoretical properties of the SGD
estimator with three different step sizes utilized in the Richardson-Romberg extrapolation in
Corollary 4.2, which can be extended to even more step sizes on a simple side. However, these
results can be hardly achieved by using the second-moment Wasserstein distance applied in
[14], since the SGD sequence can be non-stationary and the bound in the L2-norm may not
be sufficient and is nontrivial to be generalized to higher orders. Therefore, we can see the
advantage of using the Euclidean distance (i.e., the GMC property) to characterize how the
SGD iterates depend on the initial conditions. Here again, we shall emphasize the benefits
from leveraging the technical tools in nonlinear time series to study the heavily-dependent
random processes.

4.2. Online Estimator for Long-Run Covariance Matrices. For simplicity of notation,
throughout Sections 4.2 and 4.3, we consider the estimator θ̂n(γ) in (27) with a1 = 1, a2 =
2, a3 = 0 and b1 = 2, b2 = −1, b3 = 0. In particular, we write ϑk(γ) = 2θk(γ)− θk(2γ) for
each k ∈N. Then we can rewrite this bias-corrected ASGD estimator θ̂n(γ) as

θ̂n(γ) =
1

n

n∑
k=1

ϑk(γ).

Throughout this paper, we assume that λmin(Σ(γ))≥ c0 > 0 for some positive constant c0 <
∞. In this section, we construct recursive consistent estimator for the long-run covariance
matrix Σ(γ) defined in (30). It has been studied in the literature for time series [59, 61, 64].
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Let {ηm}m∈N be a strictly increasing positive integer-valued sequence. For each m ∈ N,
we define the consecutive blocks {Bm}m∈N as

Bm = {ηm, ηm + 1, . . . , ηm+1 − 1}.

Throughout, we assume that ηm+1 − ηm → ∞ as m→ ∞. Define ψ(n) = max{m ∈ N :
ηm ≤ n} and ϕ(n) = ηψ(n) for each n ∈ N. Then the nonoverlapping recursive estimator of
the long-run covariance matrix Σ(γ) is defined by Vn(γ)/n, where

Vn(γ) =

ψ(n)−1∑
m=1

( ∑
k∈Bm

{ϑk(γ)− θ̂n(γ)}

)⊗2

+

(
n∑

k=ϕ(n)

{ϑk(γ)− θ̂n(γ)}

)⊗2

.(31)

For simplicity of notation, we write δη(n) = n− ϕ(n) + 1,

Sm(γ) =
∑
k∈Bm

ϑk(γ) and Rn(γ) =

n∑
k=ϕ(n)

ϑk(γ).

To facilitate the recursive computation of Vn(γ), we rewrite it as follows,

Vn(γ) =

(
ψ(n)−1∑
m=1

Sm(γ)⊗2 +Rn(γ)
⊗2

)
+

(
ψ(n)−1∑
m=1

|Bm|2 + |δη(n)|2
)
θ̂n(γ)

⊗2

−

(
ψ(n)−1∑
m=1

|Bm|Sm(γ) + δη(n)Rn(γ)

)
θ̂n(γ)

⊤

− θ̂n(γ)

(
ψ(n)−1∑
m=1

|Bm|Sm(γ) + δη(n)Rn(γ)

)⊤

=: Vn(γ) +Knθ̂n(γ)
⊗2 −Hn(γ)θ̂n(γ)

⊤ − θ̂n(γ)Hn(γ)
⊤.

Then, it reduces to recursively compute {Vn(γ),Kn,Hn(γ), θ̂n(γ)} for any n ∈ N. To this
end, we propose a recursive algorithm which only requires O(1) storage and establish the
convergence rate of the proposed estimator.

The rational behind the recursive computation for Vn(γ) is as follows: if n+1< ηψ(n)+1,
then n+ 1 still belongs to the block Bψ(n) and ψ(n+ 1) = ψ(n). Also we have Rn+1(γ) =
Rn(γ)+ϑn+1(γ) and δη(n+1) = δη(n)+1. Consequently {Kn+1,Vn+1(γ),Hn+1(γ)} can
be recursively updated via Kn+1 =Kn − |δη(n)|2 + |δη(n+ 1)|2,

Vn+1(γ) = Vn(γ)−Rn(γ)
⊗2 +Rn+1(γ)

⊗2,

Hn+1(γ) =Hn(γ)− δη(n)Rn(γ) + δη(n+ 1)Rn+1(γ).

Otherwise, if n + 1 = ηψ(n), we have ψ(n + 1) = ψ(n) + 1. Hence Rn+1(γ) = ϑn+1(γ)
and δη(n+ 1) = 1. In this case, {Kn+1,Vn+1(γ),Hn+1(γ)} can be recursively updated via
Kn+1 =Kn + 1,

Vn+1(γ) = Vn(γ) +Rn+1(γ)
⊗2 and Hn+1(γ) =Hn(γ) +Rn+1(γ).

Consequently, given ϑ1(γ), . . . , ϑn(γ), our estimator for the long-run covariance matrix Σ(γ)
is given by

Σ̂n(γ) =
1

n
Vn(γ).

In summary, our recursive algorithm for Vn(γ) is stated in Algorithm 1 below.
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Algorithm 1: Recursive estimation of the long-run covariance matrix
Data: Observations X1,X2, . . . ,Xn; objective function g(·); constant step size γ; predefined sequence

{ηm}m∈N
Result: Extrapolated ASGD estimator θ̂n+1(γ); estimated long-run covariance matrix Σ̂n+1(γ)

Initialize θ0(γ) = θ0(2γ) = θ̂0(γ) = ϑ0(γ) =R0(γ)← 0,
ψ(0)← 1, δη(0)← 1, K0 =H0(γ)← 1, V0(γ) = V0(γ)← 0

for n= 0,1,2,3, . . . do
θn+1(γ)← θn(γ)− γ∇g(θn(γ),Xn+1); /* SGD estimate */
θn+1(2γ)← θn(2γ)− 2γ∇g(θn(γ),Xn+1);
ϑn+1(γ)← 2θn+1(γ)− θn+1(2γ);
θ̂n+1(γ)←{nθ̂n(γ) + ϑn+1(γ)}/(n+ 1) ; /* ASGD estimate */
if n+ 1< ηψ(n)+1 then
Rn+1(γ)←Rn(γ) + ϑn+1(γ), δη(n+ 1)← δη(n) + 1;
Kn+1←Kn − δ2η(n) + δ2η(n+ 1), ψ(n+ 1)← ψ(n);
Hn+1(γ)←Hn(γ)− δη(n)Rn(γ) + δη(n+ 1)Rn+1(γ);
Vn+1(γ)←Vn(γ)−Rn(γ)⊗2 +Rn+1(γ)

⊗2;
else
Rn+1(γ)← ϑn+1(γ), δη(n+ 1)← 1;
ψ(n+ 1)← ψ(n) + 1;
Kn+1←Kn + 1, Hn+1(γ)←Hn(γ) +Rn+1(γ);
Vn+1(γ)←Vn(γ) +Rn+1(γ)

⊗2;
end
Vn+1(γ)←Vn+1(γ) +Kn+1θ̂n+1(γ)

⊗2 −Hn+1(γ)θ̂n+1(γ)
⊤ − θ̂n+1(γ)Hn+1(γ)

⊤;
Σ̂n+1(γ)← Vn+1(γ)/(n+ 1); /* Recursive long-run covariance matrix
estimate */

end

THEOREM 4.3 (Precision of Σ̂n(γ)). Let ηm = ⌊c1mβ⌋ for some c1 > 0 and β > 1. Let
Assumption 1 and 2 hold with p= 4. Then, we have

E|Σ̂n(γ)−Σ(γ)|22 ≲ n(2/β−2)∨(−1/β).

REMARK 5 (Optimal convergence rate). Theorem 4.3 establishes the mean squared error
(MSE) of the recursive estimator for the long-run covariance matrix Σ(γ). In particular, when
β = 3/2, we have

E|Σ̂n(γ)−Σ(γ)|22 ≲ n−2/3.(32)

As far as we know, (32) reveals that our recursive estimator Σ̂n(γ) attains the optimal conver-
gence rate of long-run covariance matrix estimation. Recently, [64] proposed a similar recur-
sive estimator for Σ(γ) in the context of SGD estimation with decaying step size γt = c0t

−α

for some α ∈ (1/2,1). Under some regularity conditions, the convergence rate of their recur-
sive estimator is n−(1−α)/4 which is much slower than our bound n−1/3 in (32).

4.3. Bias-Reduced Online Estimator. In this section, we introduce a new estimator for
the long-run variance based on an idea for bias reduction. To illustrate the idea, we first
consider the recursive estimator based on the stationary sequence {ϑ◦k(γ)}k∈Z in (29). Recall
that ϕ(k) = ηm for any k ∈ {1, ..., n} such that ηm ≤ k < ηm+1. Also, recall in (7), we write
θ∗∞(γ) = E{θ◦k(γ)} for γ > 0. Based on {ϑ◦k(γ)}k∈Z, define V ◦

n (γ) =
∑n

k=1Q
◦
k(γ), where

for each k ∈ {1, . . . , n},

Q◦
k(γ) = (ϑ◦k(γ)− ϑ∗∞(γ))⊗2 +

k−1∑
ℓ=ϕ(k)

(ϑ◦k(γ)− ϑ∗∞(γ))(ϑ◦ℓ (γ)− ϑ∗∞(γ))⊤
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+

k−1∑
ℓ=ϕ(k)

(ϑ◦ℓ (γ)− ϑ∗∞(γ))(ϑ◦k(γ)− ϑ∗∞(γ))⊤.

In view of (30), the bias of Q◦
k(γ) is

E{Q◦
k(γ)} −Σ(γ) =

∑
|ℓ|>k−ϕ(k)

cov{ϑ◦0(γ), ϑ◦ℓ (γ)}.

which reveals that Q◦
k(γ) can have a larger bias for smaller value of k−ϕ(k). This motivates

us to propose a new estimator by excluding these terms with small value of k − ϕ(k). More
specifically, we define a sequence of positive integers {τ(m)}m∈N such that τ(m)≤ (ηm+1−
ηm) for all n ∈N. Then, the bias reduced estimator of V ◦

n (γ) is defined by excluding all these
Q◦
k(γ) with k− ϕ(k) smaller than the threshold τ(ψ(k)), that is,

U◦
n(γ) =

n∑
k=1

Q◦
k(γ)I{k− ϕ(k)≥ τ(ψ(k))}.

This motivates us to propose the bias-reduced counterpart of Vn(γ) as follows:

Un(γ) =

n∑
k=1

(
(ϑk(γ)− θ̂n(γ))

⊗2 +

k−1∑
ℓ=ϕ(k)

{ϑk(γ)− θ̂n(γ)}{ϑℓ(γ)− θ̂n(γ)}⊤

+

k−1∑
ℓ=ϕ(k)

{ϑℓ(γ)− θ̂n(γ)}{ϑk(γ)− θ̂n(γ)}⊤
)
I{k− ϕ(k)≥ τ(ψ(k))}.

For simplicity of notation, we write Ek(τ) = {k − ϕ(k) ≥ τ(ψ(k))} for each k ∈ N. For
each block Bm, we use Sτm(γ) =

∑ηm+τ(m)−1
k=ηm

ϑk(γ) to denote the part excluded for bias
reduction from Sm(γ). To facilitate the recursive computation of Un(γ), we first rewrite it as

Un(γ) = Un(γ) +Knθ̂n(γ)
⊗2 −Hn(γ)θ̂n(γ)

⊤ − θ̂n(γ)Hn(γ)
⊤,

where

Un(γ) =
n∑
k=1

(
ϑk(γ)

⊗2 +

k−1∑
ℓ=ϕ(k)

ϑk(γ)ϑℓ(γ)
⊤ +

k−1∑
ℓ=ϕ(k)

ϑℓ(γ)ϑk(γ)
⊤

)
I{Ek(τ)},

Kn =

ψ(n)−1∑
m=1

{|Bm|2 − τ2(m)}+ {|δη(n)|2 − τ2(ψ(n))} × I{En(τ)},

Hn(γ) =

ψ(n)−1∑
m=1

{|Bm|Sm(γ)− τ(m)Sτm(γ)}

+ {δη(n)Rn(γ)− τ(ψ(n))Sτψ(n)(γ)} × I{En(τ)}.

Following the idea of Algorithm 1, our algorithm for recursively computing Un(γ) is sum-
marized in Algorithm 2. Given {ϑk(γ)}k∈{1,...,n}, our estimator for Σ(γ) with bias reduction
is then defined by

Σ̃n(γ) =
1

κ(n)
Un(γ), where κ(n) = n−

ψ(n)−1∑
m=1

τ(m)−min{n− ϕ(n), τ(ψ(n))}.

We provide the consistency rate of this estimator Σ̃n(γ) in Theorem 4.4.
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Algorithm 2: Recursive estimation of the bias-reduced long-run covariance matrix
Data: Observations X1,X2, . . . ,Xn; objective function g(·); constant step size γ; predefined sequences

{ηm}m∈N and {τ(m)}m∈N
Result: Extrapolated ASGD estimator θ̂n+1(γ); estimated long-run covariance matrix Σ̃n+1(γ)

Initialize θ0(γ) = θ0(2γ) = θ̂0(γ) = ϑ0(γ) =R0(γ) = U0(γ) = Sτψ(0)(γ)← 0,
ψ(0)← 1, ϕ(0)← η1, δη(0)← 1, K0 =H0(γ)← 1, V0(γ) = V0(γ)← 0, κ(0)← 1

for n= 0,1,2,3, . . . do
θn+1(γ)← θn(γ)− γ∇g(θn(γ),Xn+1); /* SGD estimate */
θn+1(2γ)← θn(2γ)− 2γ∇g(θn(γ),Xn+1);
ϑn+1(γ)← 2θn+1(γ)− θn+1(2γ);
θ̂n+1(γ)←{nθ̂n(γ) + ϑn+1(γ)}/(n+ 1) ; /* ASGD estimate */
if n+ 1< ηψ(n)+1 then

ψ(n+ 1)← ψ(n), ϕ(n+ 1)← ϕ(n), δ(n+ 1)← δ(n) + 1;
Rn+1(γ)←Rn(γ) + ϑn+1(γ);
if n+ 1≥ ϕ(n+ 1) + τ(ψ(n+ 1)) then

if n≥ ϕ(n) + τ(ψ(n)) then
Un+1(γ)←Un(γ) + ϑn+1(γ)

⊗2 + ϑn+1(γ)Rn(γ)⊤ +Rn(γ)ϑn+1(γ)
⊤;

Kn+1←Kn − δ2η(n) + δ2η(n+ 1), Sτψ(n+1)(γ)←S
τ
ψ(n)(γ);

Hn+1(γ)←Hn(γ)− δη(n)Rn(γ) + δη(n+ 1)Rn+1(γ);
else
Un+1(γ)←Un(γ) + ϑn+1(γ)

⊗2 + ϑn+1(γ)Rn(γ)⊤ +Rn(γ)ϑn+1(γ)
⊤;

Kn+1←Kn + δ2η(n+ 1)− τ2(ψ(n+ 1));
Hn+1(γ)←Hn(γ) + δη(n+ 1)Rn+1(γ)− τ(ψ(n+ 1))Sτψ(n+1)(γ);

end
else
Kn+1←Kn, Sτψ(n+1)(γ)← 0;

Un+1(γ)←Un(γ),Hn+1←Hn;
end

else
ψ(n+ 1)← ψ(n) + 1, ϕ(n+ 1) = n+ 1, δη(n+ 1) = 1;
Rn+1(γ)← ϑn+1(γ), Sτψ(n+1)(γ)← 0;

Un+1(γ)←Un(γ), Kn+1←Kn,Hn+1(γ)←Hn(γ);
end
Un+1(γ)←Un+1(γ) +Kn+1θ̂n+1(γ)

⊗2 −Hn+1(γ)θ̂n+1(γ)
⊤ − θ̂n+1(γ)Hn+1(γ)

⊤;

κ(n+ 1)← n+ 1−
∑ψ(n+1)−1
m=1 τ(m)−min{n+ 1− ϕ(n+ 1), τ(ψ(n+ 1))};

Σ̃n+1(γ)← Un+1(γ)/κ(n+ 1); /* Recursive long-run covariance matrix
estimate with bias reduction */

end

THEOREM 4.4 (Precision of Σ̃n(γ)). Suppose that the conditions of Theorem 4.3 hold.

(1) Let ηm = ⌊c1mβ⌋ and τ(m) = ⌊c2 logm⌋ for some c1 > 0, β > 1 and c2 > 0. We have

E|Σ̃n(γ)−Σ(γ)|22 ≲ n−1/β.(33)

(2) Let ηm = ⌊c̄1m logm⌋ and τ(m) = ⌊c̄2 logm⌋ for some c̄1 > c̄2 > 0. Then

E|Σ̃n(γ)−Σ(γ)|22 ≲
logn

n
.(34)

We remark that the convergence rate in (34) is quite sharp, by noting that the mean squared
error for a parametric model is typically of order O(1/n).
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5. Derivative Analysis of Step-Size Effects on SGD. Notably, the magnitude of the
SGD update is controlled by the step size, since a small learning rate can lead to slow con-
vergence, while a large learning rate can cause oscillations or even divergence from the min-
imum. The ideal learning rate can lie somewhere in between and is typically found through
empirical tuning. In Theorem 2.2, we have shown that the GMC holds for {θk(γ)}k∈N when
0< γ < γ(p) with γ(p) defined in (15) and (16). However, the theory on the optimal step size
is quite limited in the literature. We here provide a new insight by investigating the derivative
process of SGD with respect to γ using the GMC property.

Recall that the stationary SGD process {θ◦k(γ)}k∈N can be written as

(35) θ◦k(γ) = θ◦k−1(γ)− γ∇g(θ◦k−1(γ),Xk), k ≥ 1.

We shall respectively show the existence of the stationary solutions for the first and second-
order derivative processes under some mild conditions.

5.1. Existence of the First Derivative Processes. First, we consider the first-order deriva-
tive process. Assume that g(θ,X) is second-differentiable with respect to the first argument.
Then, by taking the derivative of both sides of θ◦k(γ) in (35) with respect to γ, we have

∂γθ
◦
k(γ) =

[
Id − γ∇2g(θ◦k−1(γ),Xn)

]
∂γθ

◦
k−1(γ)−∇g(θ◦k−1(γ),Xk),(36)

where ∇2g(θ,X) is a Hessian matrix in Rd×d with respect to θ. Based on this expression,
we consider a new recursive sequence {θ̇k(γ)}k∈N defined by

(37) θ̇k(γ) =A(θ◦k−1(γ),Xk)θ̇k−1(γ)−∇g(θ◦k−1(γ),Xk),

where the random coefficient matrix A(θ,X) ∈Rd×d is defined by

(38) A(θ,X) = Id − γ∇2g(θ,X).

THEOREM 5.1 (Existence of stationary first derivative process). Assume that g(θ,X) in
(1) is a second-differentiable function with respect to θ. Denote a unit vector by δ ∈Rd, i.e.,
|δ|= 1. For an arbitrary p≥ 2, we define the random variable

Ap(θ) := sup
{δ∈Rd,|δ|=1}

EX∼Π

[
|A(θ,X)δ|p

]
,

where the random matrix A(θ,X) is defined in (38). Consider the stationary SGD iterates
θ◦(γ)∼ πγ as defined in (35). Assume that we can choose some step size γ ∈ (0, γ(p)) with
γ(p) defined in Theorem 2.2 such that

(39) Eθ◦(γ)∼πγ
[Ap(θ

◦(γ))]< 1.

Then, a stationary solution of the first derivative procedure {θ̇k(γ)}k∈N in (37) exists.

REMARK 6 (Uniform moment bound). Note that as a special case, when p = 2, the
assumption on the uniform moment bound for the coefficient matrix A(θ,X) in (39) can
also imply ∥∥E[A(θ◦k−1(γ),Xk)

⊤A(θ◦k−1(γ),Xk)
]∥∥

op
< 1,

for all k ≥ 1, where ∥ · ∥op is the operator norm. This is a mild assumption that is frequently
adopted in the literature for a strong convergence result; see for instance Assumption 1 in
[8]. Many practical applications can fulfill the condition (39). For example, the linear regres-
sion with the least-square loss as the objective function satisfies the moment condition in
Theorem 5.1.
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5.2. Existence of the Second Derivative Processes. Recall the bias expansion for the
ASGD estimate in Theorem 4.1, where we have provided an explicit form for the coefficient
of γ2 term and bound the remaining term by O(γ5/2) under some additional smoothness
conditions in Assumption 3. Therefore, beyond the first derivative process with respect to γ,
we would like to further establish the existence of a stationary solution for the second-order
derivative process, which can potentially provide a more refined bias expansion for the SGD
estimates.

Recall the definition of A(θ,X) in (38). For notation simplicity, we shall omit the depen-
dence of {θ◦k(γ)}k∈N on the step size γ in this section and denote them by {θ◦k}k∈N when no
confusion should be caused. We take the derivative on the both sides of the first derivative
process {θ̇k(γ)}k∈N in (37) and obtain

∂2γθ
◦
k =

[
−∇2g(θ◦k−1,Xk)− γ∂γ∇2g(θ◦k−1,Xk)

]
∂γθ

◦
k−1

+A(θ◦k−1,Xk)∂
2
γθ

◦
k−1 − ∂γ∇g(θ◦k−1,Xk).

Therefore, we can denote the second derivative recursive procedure by {θ̈k(γ)}k∈N with

(40) θ̈k(γ) =A(θ◦k−1,Xk)θ̈k−1(γ) + [∂γA(θ◦k−1,Xk)]θ̇k−1(γ)− ∂γ∇g(θ◦k−1,Xk).

THEOREM 5.2 (Existence of stationary second derivative process). Assume that g(θ,X)
in (1) is a second-differentiable function with respect to θ. Also, suppose that we can choose
some step size γ ∈ (0, γ(p)) with γ(p) defined in Theorem 2.2 such that, for any unit vector
δ ∈Rd and some constant p≥ 2,

(41) A∗
p := sup

θ∈Rd

sup
{δ∈Rd,|δ|=1}

E
[∣∣A(θ,X)δ

∣∣p]< 1,

where the random matrix A(θ,X) is defined in (38). Then, the following two results hold.

(i) Under the conditions in Theorem 2.2, for the first derivative process {θ̇k(γ)}k∈N defined
in (37), the p/2-th moment of θ̇k(γ) exists for p≥ 2, i.e., ∥θ̇k(γ)∥p/2 <∞.

(ii) Furthermore, if in addition, ∇2g(θ(γ),X) is differentiable with respect to γ, i.e.,
∂γ∇2g(θ(γ),X) exists, then, there exists a stationary solution for the second derivative
process {θ̈k(γ)}k∈N in (40) and fulfills ∥θ̈k(γ)∥p/2 <∞.

6. Numerical Experiments. This section is devoted to the experiments on simulated
data to demonstrate the validity of our proposed online inference methods. Specifically, we
consider two classes of examples: linear regression and logistic regression.

6.1. Linear regression and logistic regression. We generate two sequences of i.i.d. obser-
vation pairs {(z1,t, y1,t)}t≥1 and {(z2,t, y2,t)}t≥1 for the two regression models, respectively.
Let x1,t = (z1,t, y1,t) and x2,t = (z2,t, y2,t). We denote the true unknown parameter in the
models by θ∗1 and θ∗2 .

First, we generate z1,t, z2,t ∈Rd from the standard normal distribution, i.e.,

(42) z1,t ∼N(0,Id), z2,t ∼N(0,Id).

Then, we simulate y1,t, y2,t ∈R following

y1,t = z⊤
1,tθ

∗
1 + ϵt, where ϵt ∼N(0,1),(43)

y2,t = Bernoulli
{ 1

1 + exp(−z⊤
2,tθ

∗
2)

}
.(44)



THE SGD FROM A NONLINEAR TIME SERIES PERSPECTIVE 19

Denoted by g1(·) and g2(·) respectively are the loss functions of the two models, which are
defined as the negative log-likelihood, that is

g1
(
θ,z1,t, y1,t

)
= (z⊤

1,tθ− y1,t)
2/2,(45)

g2
(
θ,z2,t, y2,t

)
= (1− y2,t)z

⊤
2,tθ+ log

(
1 + exp{−z⊤

2,tθ}
)
.(46)

The true parameter θ∗ ∈ Rd is linearly spaced between 0 and 1. Since the likelihood loss of
the logistic regression in (46) is strictly convex but not strongly convex [1], we add a small
regularization term 0.005∥θ∥22 to make it strongly convex.

6.2. Empirical Performance of the Online Estimators. We first evaluate the empirical
performance of our proposed online inference method. Note that in most general cases, the
true long-run covariance matrix Σ(γ) does not have a closed form solution. Therefore, in
this section, we focus on the least square loss of the linear regression, because the limiting
covariance matrix of this quadratic case can be easily achieved. Consider the linear regression
model in (43) and we have

(47) ∇m(θ∗1) = E[z1z⊤
1 ] = Id.

and

(48) E
[
∇g(θ∗1,x1)∇g(θ∗1,x1)

⊤]= E[ϵ2]E[z1z⊤
1 ] = Id,

which directly indicates that the limiting covariance matrix

(49) Σ=∇m(θ∗1)
−1E

[
∇g(θ∗1,x1)∇g(θ∗1,x1)

⊤]∇m(θ∗1) = Id.

To compare our two online estimators, without and with bias reduction, we consider the
one-dimensional case to report the bias of the two estimators relative to the iteration steps.
All of our measurements are averaged over 500 independent runs. As shown in Figure 2a,
the results suggest that both the non-debiased (in red) and the debiased (in green) estimators
converge fast to the true value (zero bias at the dashed line) as the step number increases.
Moreover, the advanced version with bias reduction yields a better estimated value which is
closer to the true limiting variance. Here we set the constant step size to be 0.025. We also
investigate other scenarios with different step sizes and we observe the similar results that
the debiased estimator robustly outperform the non-debiased version. We defer the details to
Figure 3 in Supplement B.

6.3. Coverage Probabilities of Confidence Intervals. In this section, we construct the
online confidence intervals for the one-dimensional projection 1⊤d θ

∗ of θ∗ using our two
online estimators. Both linear regression and logistic regression are investigated. In particular,
at step k, using our online estimator Σ̂ of Σ, we can construct the (1 − α)% confidence
intervals for θk for some given α ∈ (0,1) as follows:

(50)
[
θ̂k1

⊤
d − z1−α/2

√
(1⊤Σ̂k1d)/k, θ̂k1

⊤
d + z1−α/2

√
(1⊤Σ̂k1d)/k

]
,

where z1−α/2 is the (1 − α/2)-percentile of the standard normal distribution. The bias-
reduced confidence interval can be similarly constructed with Σ̂ in (50) replaced by Σ̃.

To evaluate the coverage probability, we take the average of 500 independent repetitions.
In Figure 2b, we present the convergence trace of the empirical coverage rate of 95% CI
with the constant step size γ = 0.025 in linear regression. For the cases with other constant
step sizes or the logistic regression, we report the coverage rates in Table 1 with the standard
errors shown in the brackets. Our results show that for both the non-debiased (in red) and the
debiased (in green), the empirical coverage rates converge to the nominal probability 95%,
while the non-debiased version exhibits an enhanced coverage rate.
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(a) Bias of estimators. (b) Empirical coverage probability.

Fig 2: Recursively estimated long-run variance averaged over 500 independent runs (Linear
regression γ = 0.025). (Left) Bias of the two estimators. (Right) Empirical coverage proba-
bility of 95% confidence interval. The black dashed line indicates the nominal probability =
0.95.

TABLE 1
Empirical coverage probability of 95% confidence interval for linear regression and logistic regression over 500
independent runs. “w/o” represents the estimator without bias reduction, and “w/” represents the estimator with

bias reduction. The standard deviation is reported in the brackets.

Linear regression
step size correction n= 5000 n= 104 n= 5 ∗ 104 n= 105

0.0125
w/o 0.194 (6.831e-07) 0.332 (9.507e-07) 0.796 (1.111e-06) 0.904 (6.976e-07)
w/ 0.198 (5.839e-07) 0.364 (9.720e-07) 0.854 (1.074e-06) 0.948 (4.345e-07)

0.025
w/o 0.278 (2.056e-07) 0.402 (7.553e-08) 0.844 (7.553e-08) 0.912 (8.940e-07)
w/ 0.286 (1.577e-07) 0.408 (1.053e-06) 0.854 (8.623e-07) 0.954 (1.976e-07)

0.05
w/o 0.266 (1.543e-07) 0.380 (1.652e-07) 0.810 (8.912e-08) 0.910 (8.623e-08)
w/ 0.280 (2.251e-07) 0.396 (1.811e-07) 0.832 (1.068e-07) 0.946 (2.428e-07)

Logistic regression
step size correction n= 5 ∗ 104 n= 105 n= 5 ∗ 105 n= 106

0.0125
w/o 0.174 (3.899e-07) 0.268 (4.942e-07) 0.718 (5.002e-07) 0.894 (5.690e-07)
w/ 0.176 (2.362e-07) 0.272 (3.614e-07) 0.720 (2.251e-07) 0.906 (6.688e-07)

0.025
w/o 0.180 (2.794e-07) 0.324 (2.523e-07) 0.720 (5.031e-07) 0.902 (8.649e-07)
w/ 0.184 (3.490e-07) 0.328 (5.704e-07) 0.722 (3.157e-07) 0.914 (6.472e-07)

0.05
w/o 0.252 (1.369e-07) 0.380 (2.350e-07) 0.774 (2.091e-08) 0.908 (2.684e-08)
w/ 0.254 (2.001e-07) 0.386 (2.293e-08) 0.780 (1.329e-07) 0.922 (2.023e-07)

7. Conclusion and Discussion. In this paper, we bring nonlinear time-series tools to
the machine learning community by providing new interpretations for the SGD iterates. We
introduce the concept of geometric-moment contraction from iterated random functions, pro-
viding a new way to view the evolution of SGD process. Building on this, we establish the
convergence of ASGD in challenging heavy-tailed scenarios. For noise with finite variance,
we provide a quenched CLT and invariance principle for ASGD, allowing for effective sta-
tistical inference regardless of the starting point. By the limiting distributions in quenched
CLT, we propose an efficient online method for estimating the long-run covariance matrix
of ASGD iterates. This approach enables the construction of empirical confidence intervals,
enhancing the quantification of uncertainty in ASGD predictions.

Another contribution of our study is the identification of a precise range for the constant
step-size parameter γ that guarantees the contraction of SGD. Additionally, we refine the
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bias expansion of ASGD in terms of the step size by providing theory for an improved
Richardson-Romberg extrapolation. Furthermore, we show the existence of stationary so-
lutions for derivative SGD processes, which can lead to a deeper understanding of the SGD’s
behavior under varying step sizes.

We would like to emphasize the potential of applying time-series technical tools beyond
the SGD procedure to a broad spectrum of machine learning challenges where statistical
guarantees are in demand. The proof strategies we have developed for SGD theory have
promising applications across other machine learning algorithms. In future research, we can
extend geometric-moment contraction to SGD processes with iteration-dependent step sizes,
specifically with γ ≍ n−β , for some 1/2< β < 1. Similarly, for mini-batch gradient descent,
which balances the features of batch gradient descent and SGD, we propose investigating
its asymptotic behavior using time series coupling concepts to manage intricate dependency
structures.

Moreover, our online inference method has potential for generalization to other machine
learning algorithms, particularly those involving recursive procedures or exhibiting tempo-
ral dynamics and non-stationarity, such as Nesterov’s accelerated gradient [42], an advanced
form of momentum gradient descent, and some adaptive algorithms such as Adam [28] that
demonstrates better convergence than the SGD in certain deep learning applications. This pa-
per initiates the promising future for integrating time-series analysis with machine learning,
enhancing the theoretical understanding and practical application of these modern algorithms
in complex data streams.

SUPPLEMENTARY MATERIAL

Supplement to “The Stochastic Gradient Descent from a Nonlinear Time Series Per-
spective”.
This supplementary material contains all the technical proofs for the theorems presented in
the manuscript. Additional information of the simulation studies is also included.
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SUPPLEMENT TO “THE STOCHASTIC GRADIENT DESCENT FROM A
NONLINEAR TIME SERIES PERSPECTIVE”

APPENDIX A: POSTPONED PROOFS

A.1. Proofs of Theorems 2.2 & 3.1. The proof of Theorem 2.2 is essentially motivated
by Lemma A.1 below, which itself can be of independent interests in the bounds of the power
functions | · |p, for p > 1.

LEMMA A.1. For any two vectors x, y ∈Rd, the following two inequalities hold:
(i) for p≥ 2, ||x+ y|p − |x|p − p|x|p−2x⊤y| ≤ (|x|+ |y|)p − |x|p − p|x|p−1|y|;
(ii) for 1< p< 2, ||x+ y|p − |x|p − p|x|p−2x⊤y| ≤ 22−p|y|p.

The proof of this lemma and its application to Theorem 2.2 are provided in the Proof of
Theorem 2.2 below.

PROOF OF THEOREM 2.2. We first show the contraction in (17) for two cases with p≥ 2
and 1< p< 2 respectively.

(i) Case p≥ 2:
Let x= θ− θ′, y =−γ[∇g(θ,X)−∇g(θ′,X)]. Since the contraction in (17) holds when

|θ− θ′|= 0, w.l.o.g., we assume that |x|> 0. Let θ = θ′ + δv, where v is a unit vector in Rd
and δ ̸= 0. This gives us x= δv and |x|= |θ− θ′|= δ.

We first show the following analytical inequality:∣∣|x+ y|p − |x|p − p|x|p−2x⊤y
∣∣≤ (|x|+ |y|

)p − |x|p − p|x|p−1|y|.(51)

Let y = aδv + be, where e is a unit vector in Rd which is orthogonal to v, and a, b are some
constants in R. We define R2 = (aδ)2 + b2 and thus |y| = R. Then, since x⊤y = aδ2, we
have ∣∣|x+ y|p − |x|p − p|x|p−2x⊤y

∣∣= ∣∣[(1 + a)2δ2 + b2]p/2 − δp − paδp
∣∣

=
∣∣(δ2 + 2aδ2 +R2)p/2 − δp − paδp

∣∣.(52)

Let aδ =Ru with some constant |u| ≤ 1. Then,

(δ2 + 2aδ2 +R2)p/2 − δp − paδp = (δ+ 2δRu+R2)p/2 − δp − pδp−1Ru=: f(u).(53)

By taking the derivative of the function f(u), we obtain

d

du
f(u) =

p

2
(δ2 + 2δRu+R2)p/2−1 · 2δR− pδp−1R

= pδR
[
(δ2 + 2δRu+R2)p/2−1 − δp−2

]
,(54)

which indicates that f(u) is decreasing in [−1,−R/(2δ)] and increasing in (−R/(2δ),1].
Since f(1)> f(−1), for p≥ 2,

max
|u|≤1

|f(u)|= f(1) = (δ+R)p − δp − pδp−1R.(55)
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This, along with the fact that |x|= δ and |y|=R leads to the inequality in (51).
Further, we take the expectation on the both sides of the inequality (51) and achieve

E|x+ y|p − |x|p − p|x|p−2E(x⊤y)≤ E(|x|+ |y|)p − |x|p − p|x|p−1E|y|.(56)

Recall that x= θ − θ′, y =−γ[∇g(θ,X)−∇g(θ′,X)]. We aim to bound E|x+ y|p, which
can be decomposed into two parts as follows:

E|x+ y|p =
[
E|x+ y|p − |x|p − p|x|p−2E(x⊤y)

]
+
[
|x|p + p|x|p−2E(x⊤y)

]
=: I1 + I2.

For the part I2, it follows from Assumption 1 that

E(x⊤y) =−γ⟨θ− θ′,m(θ)−m(θ′)⟩ ≤ −µγ|θ− θ′|2.(57)

Next, for the part I1, we note that, for any p > 1 (p is not necessarily to be an integer), we
can write the right-hand side of (56) into

E(|x|+ |y|)p − |x|p − p|x|p−1E|y|=
∫ 1

s=0

∫ s

t=0
p(p− 1)E

[
(|x|+ |y|t)p−2|y|2

]
dtds.

By Hölder’s inequality and the triangle inequality, we have

E
[
(|x|+ |y|t)p−2|y|2

]
≤
(
E(|x|+ |y|t)p

)(p−2)/p(E|y|p)2/p
≤ (|x|+ ∥y∥pt)p−2∥y∥2p.

Furthermore, for each p > 1, it follows from Assumption 2 that

∥y∥p =
∥∥− γ[∇g(θ,X)−∇g(θ′,X)]

∥∥
p
≤ γLp|θ− θ′|= γLp|x|.

Hence, we can achieve

E(|x|+ |y|)p − |x|p − p|x|p−1E|y| ≤ (1 + γLp)
p|x|p − |x|p − pγLp|x|p.(58)

Finally, by combining the results for I1 and I2, we can obtain

E|θ− θ′ − γ(∇g(θ,X)−∇g(θ′,X))|p

≤
[
1− pµγ + (1+ γLp)

p − 1− pγLp
]
|θ− θ′|p.(59)

As a direct consequence, the upper bound for γ is the solution to the following equation:

(1 + γLp)
p − 1− pγ(µ+Lp) = 0.(60)

(ii) Case 1< p< 2:
First, for real d-dimensional vectors x, y the analytic inequality

(61) |x+ y|p ≤ |x|p + p|x|p−2x⊤y+ 22−p|y|p

is shown. For x= 0 or y = 0 this inequality holds obviously. For |x|, |y|> 0, define

ω =
|x|
|y|

> 0 and ϱ=
x⊤y

|x| · |y|
.

Then |ϱ| ≤ 1 and

|x+ y|p − |x|p − p|x|p−2x⊤y

|y|p
= (ω2 + 1+ 2ωϱ)p/2 − ωp − pωp−1ϱ=: ψ(ω,ϱ).
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Note that

∂

∂ϱ
ψ(ω,ϱ) = pωp−1

{(
1 +

2ϱ

ω
+

1

ω2

)p/2−1

− 1

}
.

If ω ≥ 1/2,

sup
ϱ∈[−1,1]

ψ(ω,ϱ) = ψ

(
ω,− 1

2ω

)
=
pωp−2

2
≤ p21−p ≤ 22−p.

If 0<ω < 1/2, we define a constant factor

C̃p := max
ω∈(0,1)

[
(1− ω)p − ωp + pωp−1

]
.(62)

By Proposition 1.8 in [? ], it follows that

sup
ϱ∈[−1,1]

ψ(ω,ϱ) = ψ(ω,−1) = (1− ω)p − ωp + pωp−1 ≤ 22−p.

In total, we have that for all ρ ∈ [−1,1], ω > 0 that

ψ(ω,ρ)≤ 22−p,

leading to

|x+ y|p − |x|p − p|x|p−2x⊤y

|y|p
≤ 22−p

and thus to (61). Next, recall that x = θ − θ′, y = −γ[g(θ,x) − g(θ′, x)]. By taking the
expectation on the both sides of inequality (61), we have

E|θ− θ′ − γ(∇g(θ,X)−∇g(θ′,X))|p

≤ |θ− θ′|p − p|θ− θ′|p−2(θ− θ′)⊤E
[
γ
(
∇g(θ,X)−∇g(θ′,X)

)]
+ 22−pE

∣∣γ(∇g(θ,X)−∇g(θ′,X)
)∣∣p

≤
(
1− pµγ + 22−pLppγ

p
)
|θ− θ′|p.(63)

This completes the proof of the geometric contraction condition.
Next, we shall show the existence and uniqueness of the stationary distribution πγ based

on the GMC in (11) by using Theorem 2 in [60]. To this end, recall the recursive function
FX(θ) defined in (12) and the global optimum θ∗ defined in (1). Note that, for p > 1, it
follows from Assumption 2(i) that

E|θ∗ − FX(θ
∗)|p = E|γ∇g(θ∗,X)|p <∞.(64)

In addition, it follows from Theorem 2.2 that for p > 1, there exist θ0 ∈Rd and ργ,p ∈ (0,1)
such that

E|FXn
◦ · · · ◦ FX1

(θ)− FXn
◦ · · · ◦ FX1

(θ0)|p ≤ (ρpγ,p)
n|θ− θ0|p(65)

holds for all θ ∈ Rd, n ∈ N. In fact, expressions (64) and (65) are also valid for all p≤ 1 by
Hölder’s inequality. To see this, we let p′ ∈ (0, p) and ργ,p′ = ρ

p′/p
γ,p ∈ (0,1). Then, we have

E|FXn
◦ · · · ◦ FX1

(θ)− FXn
◦ · · · ◦ FX1

(θ0)|p
′

≤
(
E|FXn

◦ · · · ◦ FX1
(θ)− FXn

◦ · · · ◦ FX1
(θ0)|p

)p′/p
≤
[
(ρpγ,p)

n|θ− θ0|p
]p′/p

= (ρpγ,p′)
n|θ− θ0|p

′
.(66)
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Therefore, both expressions (64) and (65) hold for all p > 0, which indicates that Conditions
1 and 2 in [60] are satisfied for our recursive function FX(θ).

Denote the forward iteration process by An(θ) = FXn
◦ · · · ◦ FX1

(θ). Now, we introduce
the backward iteration process Bn(θ) = FX0

◦ FX−1
· · · ◦ FX1−n

(θ) ([? ]). Note that for all

θ ∈ Rd, we have the distributional equality An(θ)
D
= Bn(θ). By Theorem 2 in [60], there

exists a random variable B∞ which is σ(X0,X−1, . . .) measurable such that for all θ ∈ Rd,
Bn(θ)→B∞ almost surely as n→∞. Thus, An(θ) converges to B∞ in distribution. Then,
as shown by Remark 1 in [60], Theorem 1 in [12] is also implied. Hence, there exists a unique
stationary distribution π with B∞ ∼ π, which does not depend θ.

Note that θn(γ) =An(θ0). Let B∞ = θ◦0(γ). Then, there exists a unique stationary distri-
bution πγ such that θ◦0(γ)∼ πγ and therefore, θk(γ)⇒ πγ . As a direct consequence of (11),
πγ has finite p-th moment. Moreover, by applying the induction to (11), we can obtain the
geometric moment contraction in (19), which completes the proof.

PROOF OF THEOREM 3.1. First, we shall provide an upper bound for the p-th moment
∥θ̄n(γ)− θ∗∞(γ)∥p for p > 1. If p≥ 2, by similar arguments as in expressions (69) and (70),
we can obtain ∥θ̄n(γ)− θ∗∞(γ)∥p =O(n−1/2). When 1< p < 2, by applying Theorem 1 in
[? ], it directly follows that ∥θ̄n(γ)− θ∗∞(γ)∥p =O(n1/p−1).

Regarding the almost sure bounds, by the geometric moment contraction in Theorem 2.2,
the results for the cases 1 < p < 2 and p ≥ 2 can be achieved by applying Corollary 2 (iii)
and Theorem 2 (i) in [? ].

A.2. Proof of Theorem 3.2.

PROOF OF THEOREM 3.2. Let {θ◦k(γ)}k∈N be the sequence of solutions from the SGD
recursive function (2) with the stationary distribution πγ . As a result, {θ◦k(γ)}k∈N is a uni-
formly ergodic Markov chain. Recall the recursive function FX(θ) in (12) and the partial
sum S◦

n =
∑n

k=1 ε
◦
k ∈Rdl in (23). Note that for each 0< γs < γ(p), s= 1, . . . , ℓ, we have

n∑
i=1

[
θ◦i (γs)− θ∗∞(γs)

]
= FX1

(θ◦0(γs))−E[FX1
(θ◦0(γs))] + · · ·

+ FXn
◦ · · · ◦ FX1

(θ◦0(γs))−E[FXn
◦ · · · ◦ FX1

(θ◦0(γs))].(67)

By Theorem 2.1 in [? ], since GMC ensures the short-range dependence, we can obtain that
any fixed linear combination of the coordinates of S◦

n converges to corresponding linear com-
bination of normal vectors. Then, the multivariate CLT holds for the vector process {ε◦k}k∈N
via the Cramér-Wold device, that is,

(68) n−1/2S◦
n ⇒N(0,Σ◦).

Similarly, we recall the partial sum Sn with any arbitrary initial point θ0 ∈ Rd defined
in Theorem 3.2. Since θ0 may not follow the stationary distribution πγs , the sequence
{θk(γs)}k∈N can be non-stationary. Therefore, we need to use the GMC property in Theorem
2.2 to show that {θk(γs)}k∈N is asymptotically stationary and the quenched CLT holds. Let
p≥ 2. It follows from Theorem 2.2 and the triangle inequality that, for each 0< γs < γ(p),
s= 1, . . . , ℓ,∥∥∥ n∑

i=1

[
θ◦i (γs)− θi(γs)

]∥∥∥
p
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=
∥∥FX1

(θ◦0(γs)) + FX2
◦ FX1

(θ◦0(γs)) + · · ·+ FXn
◦ · · · ◦ FX1

(θ◦0(γs))

−
[
FX1

(θ0(γs)) + FX2
◦ FX1

(θ0(γs)) + · · ·+ FXn
◦ · · · ◦ FX1

(θ0(γs))
]∥∥
p

≤
n∑
i=1

[ργ,p]
i|θ◦0(γs)− θ0(γs)|,(69)

where ργ,p is defined in Theorem 2.2. We write θ0(γ) = θ0. In fact, we have
n∑
i=1

[ργ,p]
i|θ◦0 − θ0|= oP(n

1/2).

To see this, note that since 0< ργ,p < 1, we can derive the limit

(70) lim
n→∞

n∑
i=1

[ργ,p]
i = lim

n→∞

ργ,p(1− [ργ,p]
n)

1− ργ,p
=

ργ,p
1− ργ,p

,

which together with expression (69) gives

lim
n→∞

∥S◦
n − Sn∥p
n1/2

≤ ργ,p
1− ργ,p

lim
n→∞

|θ◦0 − θ0|√
n

→ 0.

This, along with expression (68) and Markov’s inequality yields the quenched CLT

(71) n−1/2Sn ⇒N(0,Σ◦),

for any arbitrary starting point θ0 ∈Rd, which completes the proof.

A.3. Proof of Theorem 3.3. Before showing the proof for Theorem 3.3, we first intro-
duce the functional dependence measure following [? ], which is the key towards the proof.
In particular, we provide a detailed form of the functional dependence measure tailored for
the stationary SGD process.

Let Xi, X ′
j , i, j ∈ Z be i.i.d. random variables following the distribution Π in (1). Define

the filtration Fi = (. . . ,Xi−1,Xi) and the coupled version Fi,{k} = (. . . ,Xk−1,X
′
k,Xk+1,

. . . ,Xi). Then, there exists some measurable function Hγ such that the stationary SGD se-
quence {θ◦i (γ)}i∈N can be written as the following causal process

θ◦i (γ) =Hγ(. . . ,Xi−1,Xi) =Hγ(Fi).(72)

Let p > 1. We define the functional dependence measure of θ◦i (γ) as

(73) δk,p(γ) = ∥θ◦i (γ)− θ◦i,{k}(γ)∥p, where θ◦i,{k}(γ) =Hγ(Fi,{k}).

Further, if
∑n

i=0 δi,p <∞, we define the tail of cumulative dependence measure as

(74) Θm,p =

∞∑
i=m

δi,p.

Essentially, since the geometric moment contraction of the SGD iterates indicates the ex-
ponential decay of the functional dependence measure, one can quantify the error bound of
the Gaussian approximation using the sample size n and the p-th finite moment condition in
Assumption 2 with p > 2. We can obtain the best case rate of n1/p for any arbitrary initial
point θ0 ∈Rd.
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PROOF OF THEOREM 3.3. We shall first consider the random process {θ◦k(γ)}k∈N fol-
lowing the stationary distribution πγ . Recall the recursive function FX(θ) defined in (12)
and we can thus rewrite θ◦k(γ) into

θ◦k(γ) = FXk
◦ · · · ◦ FX1

(θ◦0).

Recall the contraction constant ργ,p ∈ (0,1) given by the geometric-moment contraction
(GMC) in Theorem 2.2. For any k ≥ 1 and some constant p > 2, we have

sup
θ◦0 ̸=θ◦

′
0

∥FXk
◦ · · · ◦ FX1

(θ◦0)− FXk
◦ · · · ◦ FX1

(θ◦
′

0 )∥p
|θ◦0 − θ◦

′

0 |
= [ργ,p]

k < 1.

As a direct consequence, the functional dependence measure δk,p(γ) converges at an expo-
nential rate as k→∞, that is, for some constant 0< ργ < 1,

(75) δk,p(γ) =O(ρkγ),

where the constant step size γ ∈ (0,1) satisfies the conditions in Theorem 2.2. Therefore,
there exists a constant A > 0 such that the tail cumulative dependence measure of the sta-
tionary SGD process {θ◦k(γ)}k∈N can be bounded by

Θi,p(γ) =

∞∑
k=i

δk,p(γ) =O
{
i−χ(log(i))−A

}
,(76)

where χ > 0 is some constant that can go to infinity. Recall the stationary partial sum se-
quence S◦

i =
∑i

k=1 ε
◦
k defined in (23). Then, it follows from Theorem 2 in [26] that there

exists a (richer) probability space (Ω̃, Ã, P̃) on which we can define random vectors ε̃◦k ∈Rdl

with the partial sum process S̃◦
i =

∑n
k=1 ε̃

◦
k, and a Gaussian process G̃◦

i =
∑n

k=1 Z̃
◦
k , where

Z̃◦
k is a mean zero independent Gaussian vector in Rdl with an identity covariance matrix,

such that (S̃◦
i )i≥0

D
= (S◦

i )i≥0 and

(77) max
i≤n

∣∣S̃◦
i −Σ◦1/2G̃◦

i

∣∣= oP(n
1/p), in (Ω̃, Ã, P̃).

Next, recall the partial sum sequence Si =
∑i

k=1 εk defined in Theorem 3.2. We shall
bound the difference ∥maxi≤n |Si − S◦

i |∥p, for p > 2. Note that, for each 0 < γs < γ(p),
s = 1, . . . , ℓ, we write Si(γs) :=

∑i
k=1 θk(γs) and S◦

i (γs) :=
∑i

k=1 θ
◦
k(γs) for simplicity.

Then, we have

S̃i(γs) := Si(γs)− S◦
i (γs)

=
[
FX1

(θ0(γs))− FX1
(θ◦0(γs))

]
+
[
FX2

◦ FX1
(θ0)− FX2

◦ FX1
(θ◦0(γs))

]
+ · · ·

+
[
FXi

◦ · · · ◦ FX1
(θ0(γs))− FXi

◦ · · · ◦ FX1
(θ◦0(γs))

]
=:

i∑
k=1

Ỹi(θ0(γs), θ
◦
0(γs)).(78)

Recall the geometric-moment contraction in Theorem 2.2 which holds for any γs ∈ (0, γ(p)).
Given the contraction constant 0< ργ,p < 1 defined in Theorem 2.2, we have

∥Ỹi(θ0(γs), θ◦0(γs))∥p ≤ [ργ,p]
i|θ0 − θ◦0|.
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Write Ỹi = Ỹi(θ0(γ), θ
◦
0(γ)). Also note that by the triangle inequality, it follows that |S̃i(γ)| ≤∑i

k=1 |Ỹi|, which is a non-decreasing sequence as i grows. Therefore, max1≤i≤n |S̃i(γ)| ≤
max1≤i≤n

∑i
k=1 |Ỹi|=

∑n
k=1 |Ỹi|, which along with the triangle inequality further yields∥∥ max

1≤i≤n
|S̃i(γ)|

∥∥
p
≤
∥∥∥ n∑
k=1

|Ỹi|
∥∥∥
p
≤

n∑
i=1

∥Ỹi∥p ≤
ργ,p(1− [ργ,p]

n)

1− ργ,p
|θ0 − θ◦0|.(79)

Hence, when the step n is large, with probability tending to 1, for p > 2, we can obtain

(80)

∥∥max1≤i≤n |Si(γ)− S◦
i (γ)|

∥∥
p

n1/p
→ 0, as n→∞.

Combining expressions (77) and (80), we can achieve the desired result.

A.4. Proof of Theorem 4.1.

PROOF OF THEOREM 4.1. It follows directly from Theorem 4 in [14] that under Assump-
tions 1–3, M1 =∇m(θ∗)⊗ Id+ Id⊗∇m(θ∗) is invertible. By the similar arguments in the
proof of Lemma 18 in [14], it can be shown that

M2 =∇m(θ∗)⊗ Id ⊗ Id + Id ⊗∇m(θ∗)⊗ Id + Id ⊗ Id ⊗∇m(θ∗)

is also invertible. In addition, the coefficient of the γ term is

∇m(θ∗)−1∇2m(θ∗)M−1
1 E[∇g(θ∗,X)⊗2].

We only need to show the explicit form of ∆2 and bound the residual term of order O(γ5/2).
Recall the stationary SGD process {θ◦k(γ)}k∈N distributed according to πγ . W.l.o.g., we

assume that θ∗ = 0. Here, we show the case with d= 1 for simplicity. It can be extended to
multivariate case using the similar reasoning and writing the k-th order derivative ∇kg(θ,X)

below as the k-th order tensor in Rdk . Given the stationary SGD updates

(81) θ◦n(γ) = θ◦n−1(γ)− γ∇g(θ◦n−1(γ),Xn), n≥ 1,

we shall calculate Eθ◦2n (γ), Eθ◦3n (γ) and Eθ◦4n (γ) to obtain ∆1 and ∆2. By taking the expec-
tation on both sides of (81), for all n≥ 1, we have

(82) E[∇g(θ◦n−1(γ),Xn)] = 0.

For conciseness, we denote the expectation of the k-th order derivative at θ∗ = 0 by

gk = E[∇kg(0,Xn)].

By Assumption 3, we can perform the fifth order Taylor expansion on ∇g(θ◦n−1(γ),Xn) at
θ∗ = 0, which gives

0 = g1 + g2E[θ◦n−1(γ)] +
1

2
g3E{[θ◦n−1(γ)]

2}+ 1

6
g4E{[θ◦n−1(γ)]

3}

+
1

24
g5E{[θ◦n−1(γ)]

4}+ r(5)γ ,(83)

where r(5)γ ∈Rd satisfying ∥r(5)γ ∥p =O(γ5/2) for p≥ 2 by the similar arguments in Lemma
13 in [14]. Since θ∗ = 0 is the global optimum, it follows that g1 = 0, and therefore, we have
the bias expansion

E[θ◦n−1(γ)] =−1

2
g−1
2 g3E{[θ◦n−1(γ)]

2}+ 1

6
g−1
2 g4E{[θ◦n−1(γ)]

3}

+
1

24
g−1
2 g5E{[θ◦n−1(γ)]

4}+ g−1
2 r(5)γ .(84)
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Based on the proof of Theorem 4 in [14], we shall develop further on the remaining term of
E[θ◦2n−1(γ)] therein which was on the order of O(γ2). We aim to provide an explicit form of
the coefficient in front of γ2.

Next, we only need to express E{[θ◦n−1(γ)]
3} and E{[θ◦n−1(γ)]

4} in terms of the second
moment E{[θ◦n−1(γ)]

2}. To this end, we first square both sides of (81) and take the expecta-
tion on both sides as well, which yields

E{[θ◦n(γ)]2}= E{[θ◦n−1(γ)]
2} − 2γE[∇g(θ◦n−1(γ),Xn)θ

◦
n−1(γ)]

+ γ2E{[∇g(θ◦n−1(γ),Xn)]
2}.(85)

We simplify the equation above and obtain

(86) 0 =−2E[∇g(θ◦n−1(γ),Xn)θ
◦
n−1(γ)] + γE{[∇g(θ◦n−1(γ),Xn)]

2}.

Again, we apply the fourth order Taylor expansions to ∇g(θ◦n−1(γ),Xn) at θ∗ = 0 on both
sides, and obtain

0 =−2E
{
g2[θ

◦
n−1(γ)]

2 +
1

2
g3[θ

◦
n−1(γ)]

3 +
1

6
g4[θ

◦
n−1(γ)]

4
}

+ γE
{[
g2θ

◦
n−1(γ) +

1

2
g3θ

◦2
n−1(γ) +

1

6
g4θ

◦3
n−1(γ)

]2}
+ o(γ2),(87)

which implies that

0 = (−2g2 + γg22)E{[θ◦n−1(γ)]
2}+ g3(−1 + γg2)E{[θ◦n−1(γ)]

3}

+
(
− 1

3
g4 +

1

4
g23 +

1

3
g2g4

)
E{[θ◦n−1(γ)]

4}+ o(γ2).(88)

Next, we take the cube of both sides of (81) and take the expectation, which gives

E[θ◦3n (γ)] = E[θ◦3n−1(γ)]− 3γE[θ◦2n−1(γ)∇g(θ◦n−1(γ),Xn)]

+ 3γ2E{θ◦n−1(γ)[∇g(θ◦n−1(γ),Xn)]
2} − γ3E{[∇g(θ◦n−1(γ),Xn)]

3}.(89)

We simplify it and get

0 =−3E[θ◦2n−1(γ)∇g(θ◦n−1(γ),Xn)] + 3γE{θ◦n−1(γ)[∇g(θ◦n−1(γ),Xn)]
2}

− γ2E{[∇g(θ◦n−1(γ),Xn)]
3}.(90)

Again, we apply the third order Taylor expansion to ∇g(θ◦n−1(γ),Xn) at 0 and obtain

0 =−3E
[
θ◦2n−1(γ)

(
g2θ

◦
n−1(γ) +

1

2
g3θ

◦2
n−1(γ)

)]
+ 3γE

[
θ◦n−1(γ)

(
g2θ

◦
n−1(γ) +

1

2
g3θ

◦2
n−1(γ)

)2]
− γ2E

[(
g2θ

◦
n−1(γ) +

1

2
g3θ

◦2
n−1(γ)

)3]
+ o(γ2),(91)

which leads to

(92) 0 = g2(−3+3γg2−γ2g22)E[θ◦3n−1(γ)]+g3

(
− 3

2
+3γ− 3

2
γ2g22g3

)
E[θ◦4n−1(γ)]+o(γ

2).

Thus, by combing expressions (84), (88) and (92), we can achieve the exact term in front of
γ2 which is independent of γ. This completes the proof.
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A.5. Proofs of Theorems 4.3 & 4.4.

PROOF OF THEOREM 4.3. W.l.o.g., we show the one-dimensional case here. The multi-
dimensional case can follow the similar arguments and thus the proof is omitted. Let σ̂2n(γ)
(resp. σ2n(γ)) be Σ̂n(γ) (resp. Σn(γ)) with d= 1. It is straightforward to verify that as M →
∞, we have ηM+1/ηM → 1 and

M∑
m=1

(ηm+1 − ηm)
2 ≍ ηM+1(ηM+1 − ηM ).

Recall (29) for the stationary process {ϑ◦k(γ)}k∈Z. Following the construction of Vn(γ)
in (31), we define

V ◦
n (γ) =

ψ(n)−1∑
m=1

∣∣∣∣∣ ∑
k∈Bm

ϑ◦k(γ)

∣∣∣∣∣
2

+

∣∣∣∣∣
n∑

k=ϕ(n)

ϑ◦k(γ)

∣∣∣∣∣
2

=:

ψ(n)−1∑
m=1

|S◦
m(γ)|2 + |R◦

n(γ)|2.

By Theorem 1 and Theorem 2 in [61], it follows that

E
∣∣∣∣ V ◦

n (γ)

nσ2(γ)
− 1

∣∣∣∣2 ≲ n(2/β−2)∨(−1/β).

Then it suffices to upper bound E|Vn(γ)− V ◦
n (γ)|2. To this end,

∥Vn(γ)− V ◦
n (γ)∥2 ≤ ∥Vn(γ)− V ◦

n (γ)∥2 + 2∥Hn(γ)θ̂n(γ)∥2 +Kn∥θ̂n(γ)∥24.(93)

Denote L̃γ =max{ργ,p,L(2γ)}. By Theorem 2.2, it follows that

∥Vn(γ)− V ◦
n (γ)∥2 ≤

ψ(n)−1∑
m=1

∥Sm(γ)−S◦
m(γ)∥4∥Sm(γ) + S◦

m(γ)∥4

+ ∥Rn(γ)−R◦
n(γ)∥4∥Rn(γ) +R◦

n(γ)∥4

≲
ψ(n)−1∑
m=1

L̃ηmγ (ηm+1 − ηm)
1/2 + L̃ϕ(n)γ (n− ϕ(n) + 1)1/2 ≤C.

Similarly, we have ∥θ̂n(γ)∥24 ≲ ∥n−1
∑n

k=1 ϑ
◦
k(γ)∥24+∥n−1

∑n
k=1(ϑk(γ)−ϑ◦k(γ))∥24 ≍ n−1

and ∥Hn(γ)∥24 ≲ n(n−ϕ(n))2. Combining these with the fact that Kn ≍ n(n−ϕ(n)) yields
Kn∥θ̂n(γ)∥24 ≍ (n − ϕ(n)) and ∥Hn(γ)θ̂n(γ)∥2 ≲ (n − ϕ(n)). Putting all these pieces to-
gether, we obtain ∥Vn(γ)− V ◦

n (γ)∥2 ≲ (n− ϕ(n))≍ n1−1/β in view of (93). Consequently,
it follows that

E
∣∣∣∣ σ̂2n(γ)σ2(γ)

− 1

∣∣∣∣2 ≲ E
∣∣∣∣ V ◦

n (γ)

nσ2(γ)
− 1

∣∣∣∣2 +E
∣∣∣∣V ◦

n (γ)− Vn(γ)

nσ2(γ)

∣∣∣∣2 ≲ n(2/β−2)∨(−1/β).

PROOF OF THEOREM 4.4. The proof of Theorem 4.4 is similar to that of Theorem 4.3
and thus omitted.
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A.6. Proofs of Theorems 5.1 & 5.2.

PROOF OF THEOREM 5.1. Recall the i.i.d. observations X1, . . . ,Xn and the filtration
Fk = (. . . ,Xk−1,Xk). We shall omit the dependence of θ◦k(γ) on the step size γ through-
out the rest of the proof for the notation simplicity. By induction, the first-order derivative
process in (37) can be further written into

θ̇k =A(θ◦k−1,Xk)θ̇k−1(γ)−∇g(θ◦k−1,Xk)

=
( k∏
i=1

A(θ◦i−1,Xi)
)
θ̇0 −

k∑
i=1

( k−i∏
t=1

A(θ◦k−t,Xk−t+1)
)
∇g(θ◦i−1,Xi),(94)

where the matrix product
∏k
t=1A(θ◦t−1,Xt) =A(θ◦k−1,Xk) · · ·A(θ◦0,X1). Note that the ran-

dom matrices A(θ◦k−1,Xk) are dependent over k. Since {θ◦k}k∈N is a stationary process, we
shall apply the ergodic theorem as shown in [? ] and we need to prove that, for any unit vector
δ ∈Rd,

k∏
t=1

|A(θ◦t−1,Xt)δ| → 0.

To this end, we shall note that by the condition in (39) and Jensen’s inequality, we have, for
any unit vector δ ∈Rd,

E
[
log
∣∣A(θ◦k−1,Xk)δ

∣∣]= E
[
E
[
log
∣∣A(θ◦k−1,Xk)δ

∣∣ | Fk−1

]]
≤ E

[1
p
logE

[∣∣A(θ◦k−1,Xk)δ
∣∣p | Fk−1

]]
≤ 1

p
logEθ◦∼πγ

[Ap(θ
◦
k−1)]< 0.(95)

Hence, by the strong law of larger numbers, we can achieve

(96)
1

k

k∑
i=1

log
∣∣A(θ◦i−1,Xi)δ

∣∣→ E
[
log
∣∣A(θ◦0,X1)δ

∣∣], a.s.

which further gives

(97)
k∏
i=1

∣∣A(θ◦i−1,Xi)δ
∣∣= exp

{
− k · 1

k
log
∣∣A(θ◦i−1,Xi)δ

∣∣}→ 0. a.s.

Finally, we have, almost surely,

(98) θ̇k →
k∑
i=1

( k−i∏
t=1

A(θ◦k−t,Xk−t+1)
)
.

This proves the existence of a stationary solution of the recursion (37).

PROOF OF THEOREM 5.2. Recall the explicit form of the first-order derivative process
θ̇k(γ) derived in expression (94). First, we show that, by assuming the existence of the Hes-
sian matrix ∇2g(θ,X) with respect to θ,

(99) E
[
|θ̇k(γ)|p/2

]
<∞, for p≥ 2.
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Recall the i.i.d. observations X1, . . . ,Xn and the filtration Fk = (. . . ,Xk−1,Xk). Write
Ak =A(θ◦k−1,Xk) for convenience. Denote the operator norm by ∥ · ∥op. When p = 2, for
any unit vector δ ∈Rd, we have

E[|Ak · · ·A1δ|2] = E
[
E[(δ⊤A⊤

1 . . .A
⊤
kAk . . .A1δ) | Fk−1]

]
= E

[
δ⊤A⊤

1 . . .A
⊤
k−1E(A⊤

kAk)Ak−1 . . .A1δ
]

≤ ∥E[A⊤
kAk]∥op ·E[δ⊤A⊤

1 . . .A
⊤
k−1Ak−1 . . .A1δ],

where ∥E[A⊤
kAk]∥op < 1 as implied by the condition in (39). Therefore, by induction, we

have E[|Ak · · ·A1δ|2] < 1. For p > 2, recall A∗
p defined in (41). Then, it similarly follows

that

E[|Ak · · ·A1δ|p] = E
[
|δ⊤A⊤

1 . . .A
⊤
kAk . . .A1δ|p/2

]
= E

[
E[|δ⊤A⊤

1 . . .A
⊤
kAk . . .A1δ|p/2 | Fk−1]

]
≤

k∏
i=1

sup
δ∈Rd,|δ|=1

E|Aiδ|p ≤ [A∗
p]
k < 1.

Note that by Fatou’s Lemma and the Hölder inequality, we can achieve, for all large k ∈N,

∥θ̇k(γ)∥p/2 =
∥∥ limsup

k→∞
θ̇k(γ)

∥∥
p/2

≤ limsup
k→∞

k∑
i=1

[ k−i∏
t=1

(
sup

δ∈Rd,|δ|=1
E|Ak−t+1δ|p

)1/p∥∇g(θi−1,Xi)∥p
]

≤
∞∑
i=1

[A∗
p]
i/p∥∇g(θi−1,Xi)∥p,(100)

which is bounded since the constant A∗
p < 1 and the p-th moment ∥∇g(θi−1,Xi)∥p <∞ as

indicated by Assumption 2. Thus, we achieve the desired result in (i).
Next, we aim to show that the existence of a stationary solution for the second-order

derivative process with respect to γ. Recall the recursion procedure in (40) that

θ̈k(γ) =A(θ◦k−1,Xk)θ̈k−1(γ) + [∂γA(θ◦k−1,Xk)]θ̇k−1(γ)− ∂γ∇g(θ◦k−1,Xk)

=:A(θ◦k−1,Xk)θ̈k−1(γ) + c(θ◦k−1,Xk),(101)

where

(102) c(θ◦k−1,Xk) = [∂γA(θ◦k−1,Xk)]θ̇k−1(γ)− ∂γ∇g(θ◦k−1,Xk).

Due to the same structure of (101) compared to (37), the same arguments apply regarding
the contraction of the random coefficient matrix A(θ,X) which assures the existence of a
stationary solution for the recursive procedure {θ̈k(γ)}k∈N. Further, notice that the structure
of the recursive function c(θ,X) in (102) is also similar to the one in (37) and we have
already shown ∥θ̇k(γ)∥p/2 <∞. Therefore, we only need to prove ∥c(θ,X)∥p <∞ to obtain
∥θ̈k(γ)∥p/2 <∞. To see this, we note that by the definition of A(θ,X) in (38), we have

(103) ∂γA(θ◦k−1,Xk) =−∇g(θ◦k−1,Xk)− γ∂γ∇g(θ◦k−1,Xk),

which exists and has bounded p-th moment by assumptions. Therefore, we have ∥θ̈k(γ)∥p/2 <
∞ for some fixed γ ∈ (0, γ(p)).
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APPENDIX B: ADDITIONAL INFORMATION OF SIMULATION STUDIES

B.1. Improved ASGD Estimates by Multiple Step Sizes. We consider the SGD pro-
cedure with three different constant step sizes: γ = 0.0125, 0.025 and 0.05. For simplicity,
we denote respectively the extrapolated estimators using two and three different step sizes by

θ̂(2)n (γ) = 2θ̄n(γ)− θ̄n(2γ),

and

θ̂(3)n (γ) =
8

3
θ̄n(γ)− 2θ̄n(2γ) +

1

3
θ̄n(4γ).

TABLE 2
Linear regression. Absolute value of the average bias over 100 independent runs.

step size estimator n= 100 n= 1000 n= 5000 n= 104 n= 105 n= 106

γ = 0.025
θ̄n(γ) 1.942e-01 1.782e-02 4.520e-03 1.923e-03 1.823e-04 9.154e-05

θ̂
(2)
n (γ) 1.375e-01 1.462e-02 2.915e-03 1.355e-03 6.670e-05 8.489e-06
θ̂
(3)
n (γ) 8.638e-02 8.363e-03 2.823e-03 9.776e-04 2.470e-05 1.725e-06

γ = 0.05
θ̄n(γ) 1.145e-01 1.911e-02 5.352e-03 2.632e-03 5.348e-04 1.327e-04

θ̂
(2)
n (γ) 8.051e-02 7.328e-03 3.207e-03 1.066e-03 3.083e-04 8.604e-05
θ̂
(3)
n (γ) 5.274e-02 4.713e-03 2.490e-03 8.798e-04 1.410e-04 3.584e-06

B.2. Comparison of Two Online Estimators of Long-Run Covariance. We report the
convergence trace of our proposed online estimators with different constant step sizes. In
Figure 3, we show the difference between the bias of the non-debiased and the bias-reduced
estimators. One can observe that our bias reduction works robustly across different step sizes.

Further, we report more cases of the estimated long-run variances in both linear regression
and logistic regression. Since we do not have a closed-form solution for the true long-run
variance of the logistic regression, we simply choose the estimated long-run but with an
extremely large iteration step number, i.e., 0.1 billion, as the baseline. As shown in Figure
4–7, our two proposed online estimators can converge to the true long-run as the step number
increases.

Fig 3: Difference between the estimators with and without bias correction, i.e., σ̂ − σ̃. The
accuracy of the bias-reduced estimator outperforms the non-debiased one regardless of dif-
ferent step sizes.
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(a) Linear regression, γ = 0.01 (b) Linear regression, γ = 0.005

Fig 4: Recursive estimation of the long-run variance without bias reduction. The red line is
the oracle value with n= 0.1 billion.

(a) Linear regression, γ = 0.01 (b) Linear regression, γ = 0.005

Fig 5: Recursive estimation of the long-run variance with bias reduction. The red line is the
oracle value with n= 0.1 billion.

(a) Logistic regression, γ = 0.01 (b) Logistic regression, γ = 0.005

Fig 6: Recursive estimation of the long-run variance without bias reduction. The red line is
the oracle value with n= 0.1 billion.

(a) Logistic regression, γ = 0.01 (b) Logistic regression, γ = 0.005

Fig 7: Recursive estimation of the long-run variance with bias reduction. The red line is the
oracle value with n= 0.1 billion.
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