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1. Introduction

Generative adversarial networks (GANs) are a class of algorithms in machine
learning for learning distributions in high-dimensional feature spaces. After the
training process, they are able to generate new random fake observations mim-
icking the observations already seen. In applications, they have shown to provide
surprisingly good results in image and speech generation as well as in inpainting
tasks.

The training process is designed as follows: Iteratively, two neural networks
compete against each other. While the first network (the generator) produces
new random observations which imitate the original training samples, the second
network (the critic or discriminator) judges their quality and tries to discrimi-
nate between true and generated observations. The assessment is performed with
a specific distance of probability distributions. The original GAN was defined
with a Kullback-Leibler-type divergence (so called Vanilla GANs, cf. [15]). In
practical applications, GANs using the Wasserstein distance (so called WGANs,
cf. [4], [16]) have become popular due to their training stability and the high
quality of the generated observations. In contrast to other divergence measures,
such as the Kullback-Leibler divergence or the total variation divergence, the
Wasserstein distance metrizes weak convergence, which makes it sensible to dif-
ferences of distributions on lower-dimensional submanifolds and with disjoint
supports (cf. [4]). This property stabilizes the training procedure of WGANs
remarkably.

Let d ∈ N be the dimension of the feature space. WGANs learn a structured
probability distribution PX from potentially high-dimensional training samples
Xi ∈ Rd, i ∈ {1, ..., n}. To do so, a latent space RdZ with dimension dZ ∈ N
and latent random variables Z1, ..., Zn ∈ RdZ with a given “base distribution”
PZ are introduced. Then one tries to minimize the Wasserstein distance of the
empirical measure of the training samples,

P̂Xn :=
1

n

n∑
i=1

δXi



M. Haas and S. Richter/Time series and Wasserstein GANs 3

(here, δXi denotes the point measure on Xi) and the empirical measure of mod-
ified latent variables,

P̂g(Z)
n :=

1

n

n∑
j=1

δg(Zj),

with respect to the generator g : RdZ → RdX . After the learning process, an
estimator ĝ of g can produce new observations ĝ(Z) which approximately follow
PX by sampling from the latent space Z ∼ PZ .

The approach was generalized to conditional distributions PX|Y in [21]. Let
dY ∈ N be the dimension of the conditional feature space. If samples (Xi, Yi) ∈
Rd+dY , i ∈ {1, ..., n} are observed, then the conditional WGAN approximately
minimizes the Wasserstein distance between the empirical measure

P̂X,Yn :=
1

n

n∑
i=1

δXi,Yi

and

P̂g(Z,Y ),Y
n :=

1

n

n∑
i=1

δg(Zi,Yi),Yi ,

where here the conditional generator is a function g : RdZ+dY → Rd which also
incorporates the values of Y during evaluation. In the same manner as before,
approximate observations from PX|Y can be obtained after the learning process
(i.e. when an estimate ĝ of g is available) by ĝ(Z, Y ) with samples Z ∼ PZ
and given observations Y . In practice, conditional GANs (cGANs) introduce
the information Y = y to the generator in various stages of the architecture.
cGANs are very popular for generating images given certain labels such as age,
gender or glasses [2] and in image-to-image translation tasks (cf. [17, 20]), e.g.
colorizing images or reconstructing higher resolution.

In both situations (unconditional and conditional), WGANs provide an ap-
proximation of the law of PX or PX|Y via ĝ(Z) or ĝ(Y,Z) and offer a powerful
tool to obtain new samples even if the training data is high-dimensional. The
reason is that under appropriate restrictions on the structure of g and the di-
mension dZ of the latent variables, the data g(Z) lies in a low-dimensional
submanifold of Rd.

The purpose of this paper is to provide a theoretical framework for condi-
tional and unconditional WGANs and to prove convergence rates of the excess
Bayes risk (with respect to a modified Wasserstein distance) in the context of
time series Xi, i = 1, ..., n. We formalize in which sense the learned generator
function can be used to provide asymptotic confidence sets for X. As an appli-
cation, we will investigate conditional WGANs to provide confidence intervals
for observations of high-dimensional time series. The use of WGANs and our
corresponding theory is not limited to this example: For instance, one could
think of new smoothed Bootstrap techniques.

Recent results from [6] and [7] already provided theoretical results for the
excess Bayes risk of GANs and WGANs in the case of i.i.d. observations Xi.
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They used network classes fixed in n for both discriminators and generators and
therefore could not derive convergence rates for the whole excess Bayes risk.
Furthermore, the minimized objective could not be used to derive (asymptotic)
distributional properties of their corresponding estimators ĝ. With our results,
we extend the theory of these publications in several ways:

1. We derive explicit statistical properties like characterization of weak con-
vergence for the modified Wasserstein distance used in WGANs

2. We investigate the conditional WGAN, which is an important generaliza-
tion for standard statistical applications as forecasting.

3. We allow the generator to be in a Hölder class and explicitly discuss upper
bounds for the approximation error of ĝ. This yields explicit upper bounds
on the whole excess Bayes risk and allows a discussion of the impact of
structural assumptions on g and how the curse of dimension can be avoided
in practice.

4. We allow the observations Xi, i = 1, ..., n and Yi, i = 1, ..., n to be depen-
dent.

From a technical point of view, we measure dependence with absolutely regular
β-mixing coefficients. We use empirical process theory from [12] and [10] as well
as refined Talagrand’s inequalities from [8] to provide large deviation inequalities
of the excess Bayes risk.

The paper is organized as follows. In Section 2, we introduce the Wasserstein
metric as well as the conditional and unconditional WGAN estimator based on
neural networks. Section 3 covers the unconditional case. We firstly relate the
introduced modified Wasserstein distance (a network based integral probability
metric, cf. [22]) to the 1-Wasserstein distance. Then we provide convergence
rates for the excess Bayes risk with respect to this distance under structural
assumptions on the underlying data generating process and the neural net-
works used for estimation. In Section 4 we establish equivalent results for the
conditional case. In Section 5, we transfer our results from Section 4 to high-
dimensional time series forecasting. In Section 6, we provide simulation results of
the conditional WGAN algorithm both for simulated data and real-world tem-
perature data. A short conclusion is drawn in Section 7. All proofs are deferred
without further reference to the Appendix.

We now summarize some notation used in this paper. (Ω,A,P) will denote

a Borel probability space. For some vector x ∈ Rd, let |x| = (
∑d
j=1 |xj |2)1/2

denote its Euclidean norm, |x|∞ = maxi |xi| and |x|0 =
∑
i 1(xi 6= 0). For

measurable functions f : T → R, we write ‖f‖∞ := supx∈T |f(x)| whenever

there is no ambiguity on the domain T ⊂ Rr. For f : T → Rd̃, we further denote

‖f‖∞ := maxj=1,...,d̃ ‖fj‖∞ and the Lipschitz norm ‖f‖L := supx6=y
|f(x)−f(y)|
|x−y|

we denote the Lipschitz norm w.r.t. the Euclidean norm | · |. Finally, we use
the following multi-index calculus: For differentiable functions f : T → R and
α = (α1, . . . , αr) ∈ Nr0, let |α| =

∑r
i=1 αi and let ∂αf = ∂α1

1 . . . ∂αrr f denote the
r-th partial derivative. Finally, for real-valued random variables W and q > 0
we write ‖W‖q := E[|W |q]1/q.
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2. The Wasserstein GAN estimator

Throughout the paper, we consider Xi, i = 1, ..., n to be a strictly stationary
process taking values in [0, 1]d, where d ∈ N is an arbitrary dimension. Here, we
restrict ourselves to the unit cube [0, 1]d for convenience, our theory could easily
be generalized to arbitrary compact Euclidean spaces. We start with an intro-
duction of the typical approximations used in the Wasserstein GAN approach
as well as the optimization problem we aim to discuss. Based on this notation,
we then give a statistical formulation of the conditional Wasserstein GAN. To
keep our assumptions concise, we define the set of functions f : T ⊂ Rr → R
with Hölder coefficient β ≥ 1 via

Cβ(T,K)

:=
{
f : T → R

∣∣ ∑
α: 0≤|α|<β

‖∂αf‖∞ +
∑

α: |α|=β−1

sup
x 6=y

|∂αf(x)− ∂αf(y)|
|x− y|∞

≤ K
}
,

where K > 0.

2.1. Simplification of the WGAN objective and model assumption

Let dZ ∈ N and PZ a known distribution on [0, 1]dZ . Let G ⊂ {g : RdZ →
Rd measurable} be a space of generators. In this paper, we will assume that
G consists of smooth functions with a special structure (this is made precise
in Definition 2.1). The objective of a WGAN is to approximate the underlying
probability distribution PX by minimizing the 1-Wasserstein distance to Pg(Z)

with respect to g ∈ G. By the Kantorovich-Rubinstein duality (cf. [30]), the 1-
Wasserstein distance of two probability distributions P1,P2 on Rd can be written
as

W1(P1,P2) = sup
f :Rd→R,‖f‖L≤1

{∫
f dP1 −

∫
f dP2

}
.

The original objective of the WGAN is to find a suitable g ∈ G which minimizes

W1(PX ,Pg(Z)) = sup
f :Rd→R,‖f‖L≤1

{
Ef(X)− Ef(g(Z))

}
. (2.1)

In practical applications, the set of critics f : Rd → R is replaced by a certain
set of neural networks RD ⊂ {f : Rd → R}. This replacement makes the ob-
jective more tractable and also allows the graphical interpretation of competing
networks. Similarly, for estimation, the set of possible generators G is replaced
by a set of neural networks RG ⊂ {f : RdZ → Rd}.

In the following, we therefore replace the theoretical objective (2.1) by

W1,n(g) := sup
f∈RD,‖f‖L≤1

{
Ef(X)− Ef(g(Z))

}
. (2.2)

Note that W1,n may depend on n through the classRD. Due to the restriction
on f ∈ RD, one can not expect that W1,n(g) = W1(PX ,Pg(Z)). This raises the
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Fig 1: Structure of the generating functions g which are used to model the
distribution of X with g(Z).

question which properties W1,n(g) should preserve (and thus, how large and of
which form RD should be) to make it a meaningful distance of the measures
PX and Pg(Z). Our basic aim is to preserve the property that W1,n characterizes
weak convergence in the sense that for any sequence gn ∈ RG,

W1,n(gn)→ 0 implies gn(Z)
d→ X.

The precise conditions on RD and its connections to the space RG of generators
are given in Lemma 3.2 in Section 3.

In [24, Theorem 3] it was shown that the 1-Wasserstein distance between
two measures in Rd can, in general, not be estimated with a better rate than
(n log(n))−1/d. Even though W1,n(g) is smaller than W1(PX ,Pg(Z)), one needs
specific structural assumptions on the underlying distribution and the class of
estimators to overcome the curse of dimension. Since we aim to approximate
PX by Pg(Z), it is clear that we expect some kind of “sparsity” of X if dZ < d.
If we expect PX to lie (approximately) in a dg-dimensional submanifold (dg ∈
{1, ..., d}) of Rd, it seems reasonable to choose dZ = dg. To allow for a more
flexible choice of dZ , we introduce the following function class.

Definition 2.1 (Generator function class). Let G(dZ , dg, β,K) be the set of all
measurable functions g : RdZ → Rd such that any component only depends on
dg arguments and lies in Cβ([0, 1]dZ ,K).

In principle, one can allow for much more complicated structures of the gener-
ator functions. Here we reduce ourselves to the above formulation for simplicity.
An example of a more general class which has auto-encoder structure is in-
troduced for the conditional case (cf. Definition 2.2) and could also be chosen
here.
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2.2. ReLU neural networks

We now specify the classes RD and RG of neural networks in more detail. To do
so, we use a theoretical formulation from [28]. For x ∈ R, let σ(x) = max{x, 0}
denote the rectified linear unit (ReLU) activation function. For v, x ∈ Rp, p ∈ N,
define

σv(x) = σ(x− v),

where σ(·) is applied component-wise to the vector x − v. Let L ∈ N and
p = (p0, ..., pL+1) ∈ NL+2. A neural network with network architecture (L,p) is
a function

h : Rp0 → RpL+1 , h(x) = W (L)σv(L)W (L−1) . . .W (1)σv(1)W
(0)x, (2.3)

where W (l) ∈ Rpl×pl+1 , l = 0, ..., L are the weight matrices and v(l) ∈ Rpl ,
l = 1, ..., L are the bias vectors associated to the network. Consequently, let

R(L,p) =
{
h : Rp0 → RpL+1 | g is of the form (2.3)

}
,

be the class of deep ReLU networks with network architecture (L,p). Training
of neural networks typically is done with a stochastic gradient descent method
and a random initialization of the weight matrices. It is observed in practice
that only few parameters of the resulting networks are “active” in the sense
that they contribute to the final function value. Accordingly, we introduce the
set of sparse networks bounded by F > 0 by

R(L,p, s, F ) :=
{
h ∈ R(L,p)

∣∣∣ max
j=0,...,L

‖Wj‖∞ ∨ |vj |∞ ≤ 1,

L∑
j=0

‖Wj‖0 + |vj |0 ≤ s and ‖ |h|∞‖L∞([0,1]p0 ) ≤ F
}
.

Since F is fixed, we will abbreviate R(L,p, s) = R(L,p, s, F ) in the following.

2.3. The unconditional WGAN estimator

We use the theoretical formulation in (2.2) but replace the expectation Ef(X) by
its empirical counterpart 1

n

∑n
i=1 f(Xi). Furthermore, Ef(g(Z)) is approximated

by 1
nE
∑nE
j=1 f(g(Zij)), where Zi,j , j = 1, ..., E , i = 1, ..., n are i.i.d. realizations

of PZ (independent of Xi, i = 1, ..., n) and E ∈ N is some parameter. We then
obtain

ĝn := arg min
g∈R(Lg,pg,sg)

Ŵ1,n(g) (2.4)

with

Ŵ1,n(g) := sup
f∈R(Lf ,pf ,sf ),‖f‖L≤1

{
P̂Xn f − P̂ZnE(f ◦ g)

}
= sup

f∈R(Lf ,pf ,sf ),‖f‖L≤1

1

n

n∑
i=1

{
f(Xi)−

1

E

E∑
j=1

f(g(Zi,j))
}
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where Lg, Lf ∈ N are the layer sizes, pg,pf the corresponding width vectors
and sg, sf the sparsity parameters.

Note that an optimizer ĝn exists (cf. [7]), since Ŵ1,n is Lipschitz continuous
with respect to g ∈ R(Lg,pg, sg) and g ∈ R(Lg,pg, sg) is Lipschitz continuous
with respect to its parameters W (l), v(l), which in turn are defined on a compact
set. Similarly there exists an optimal critic network in R(Lf ,pf , sf ) for any
function g : [0, 1]dZ → [0, 1]d.

The parameter E is motivated by algorithms which are used in practice to
find approximations of (2.4), cf. Section 6. These algorithms work iteratively.
Each iteration which uses all training data is called epoch. The random variables
Zi, i = 1, ..., n are not sampled one time at the beginning but new samples are
generated in each training epoch. Although in practice the generator only has
access to a part of the data Xi, i = 1, ..., n in each epoch, E roughly grows
proportional to the number of epochs. Thus one can imitate the knowledge
coming from the additional realizations of PZ and study its implications.

Appropriate choices for these parameters to guarantee upper bounds for the
excess Bayes risk are formulated in Section 3.

2.4. The conditional WGAN estimator

Conditional GANs (cGANs), firstly introduced in [21], extend the task of learn-
ing to sample from a given distribution PX to learning to sample from condi-
tional distributions PX|Y=y, y ∈ [0, 1]dY , where Y is another random variable
in a space [0, 1]dY encoding some information about X. The idea is simply to
learn the joint distribution PX,Y with the same Wasserstein objective (2.1) with
a generator that has access to Y . The formal legitimation is that if we find a
function g∗c : [0, 1]dZ+dY → Rd with PX,Y = Pg∗c (Z,Y ),Y , then the independency
of Y, Z implies PX|Y=y = Pg∗c (Z,y).

We introduce a more complex class Gc(dZ , dY , D, dg, β,K) of generators with
encoder-decoder structure, cf. Figure 2, so that generators can depend on all
components of the conditional information given by Y , even for large dimensions
dY .

Definition 2.2 (Encoder-decoder structure). Let Gc(dZ , dY , D, dg, β,K) be the
set of all measurable functions g : RdZ+dY → Rd which have the form

g = gdec ◦ genc,1 ◦ genc,0,

where

• genc,0 : RdZ+dY → RD such that any component only depends on dg
arguments and lies in Cβ([0, 1]dg ,K),

• genc,1 : RD → Rdg such that any component lies in C β̃([0, 1]D,K), with

some β̃ ≥ D
dg
β.

• gdec : Rdg → Rd such that any component lies in Cβ([0, 1]dg ,K).
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Fig 2: Structure of the generating functions g which are used to model the
distribution of (X,Y ) with (g(Z, Y ), Y ).

The original objective now is to find a minimizer of

W c
1,n(g) := sup

f∈R(Lf ,pf ,sf ),‖f‖L≤1

{
Ef(X,Y )− Ef

(
g(Z, Y ), Y

)}
.

If (Xi, Yi), i = 1, . . . , n are strictly stationary realizations of P(X,Y ) and Zi,
i = 1, ..., n are i.i.d. realizations of PZ independent of (Xi, Yi), i = 1, ..., n, we
define

ĝcn := arg min
g∈R(Lg,pg,sg)

Ŵ c
1,n(g) (2.5)

with

Ŵ c
1,n(g) := sup

f∈R(Lf ,pf ,sf ),‖f‖L≤1

1

n

n∑
i=1

{
f(Xi, Yi)− f(g(Zi, Yi), Yi)

}
where Lg, Lf ∈ N are the layer sizes, pg,pf the corresponding width vectors
and sg, sf the sparsity parameters. Appropriate choices for these parameters
to guarantee upper bounds for the excess Bayes risk are formulated in Section
4. Note that in contrast to the unconditional WGAN, we do not implement
the additional realizations of PZ which may occur in practical algorithms. The
reason is that for the conditional WGAN, the observations Yi in the second
summand in Ŵ c

1,n(g) restrict the use of additional knowledge from Z without
rather technical assumptions on the structure of g.
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3. Theoretical results for the unconditional WGAN

The first part of this section is devoted to the properties of the modified distances
W1,n(g). We show connections between W1,n(g) and distances which do not
depend on n and prove that under certain assumptions on the set of networks
RD(Lf ,pf , sf ), W1,n(g) characterizes weak convergence.

In the second part, we provide upper bounds and convergence rates for the
excess Bayes risk

Rn(g) := W1,n(g)− inf
g∈G(dZ ,dg,β,K)

W1,n(g) (3.1)

for the unconditional WGAN estimator ĝn under assumptions on the network
structure. In the third part, we summarize the results to provide asymptotic
confidence intervals.

3.1. Properties of the modified Wasserstein distance

We first investigate the connection of W1,n(g) to

W γ
1 (g) := sup

f∈Cγ([0,1]d,K),‖f‖L≤1

{
Ef(X)− Ef(g(Z))

}
.

In opposite to W1,n, the quantity W γ
1 does not depend on n and therefore can

be seen as a more “stable” distance measure for PX towards Pg(Z). Note that

W γ
1 (g) ≤ W1,n(g) + 2 sup

f∈Cγ([0,1]d,K)

inf
f̃∈R(Lf ,pf ,sf )

‖f − f̃‖∞.

Using approximation results for neural networks from [28] (cf. Theorem B.2
in the Appendix), one obtains the following result.

Lemma 3.1 (Lower bound on W1,n). Let an = n−
2γ

2γ+d , and suppose that

• F ≥ 1,
• Lf ≥ log2(n) log2(4d ∨ 4γ),
• mini=1,...,L pf,i & nan
• sf & log(n)nan,

where the constants in the asymptotic expression above depend on γ, d. Then
there exists some constants C > 0,K ∈ (0, 1) only depending on γ, d, F such
that

sup
f∈Cγ([0,1]d,K),‖f‖L≤1

inf
f̃∈RD(Lf ,pf ,sf )

‖f − f̃‖∞ ≤ Ca1/2n .

Especially, for any measurable g : RdZ → Rd,

W γ
1 (g) ≤W1,n(g) + Ca1/2n . (3.2)
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The lemma shows that the convergence rate of W1,n(ĝn) transfers to W γ
1 (ĝn)

as long as a
1/2
n ≤ W1,n(ĝn). In fact, this imposes a lower bound on the Hölder

exponent γ of functions considered with W γ
1 .

In the case that PX = Pg∗(Z) with some g∗ ∈ G(dZ , dg, β,K), the results for
the excess Bayes risk (3.1) presented in the following Section 3.2 can be used
to derive weak convergence. The reasoning is as follows: If Rn(ĝn) → 0, then
EW1,n(ĝn)→ 0. Then the following lemma can be used.

Lemma 3.2 (Characterization of weak convergence). Suppose that PX = Pg∗(Z)

for some g∗ ∈ G(dZ , dg, β,K) and let the assumptions of Lemma 3.1 hold with
some γ ≥ 1. Let (ĝn)n∈N be a sequence of random variables with EW1,n(ĝn)→ 0.
Then

ĝn(Z)
d→ g∗(Z) = X.

The lemma basically follows from Lemma 3.1 and the fact that Cγ([0, 1]d)
forms a convergence-determining class.

Remark 3.3. Lemma 3.2 implies weak convergence of Pĝn(Z) towards PX , but
it does not give any information about the speed of convergence. Nevertheless
it seems reasonable that the speed depends on the upper bound in (3.2) which

is given by the two summands W1,n(g) and a
1/2
n . Therefore, one should choose

γ ≥ 1 large enough such that a
1/2
n . W1,n(g). This is done in Remark 3.5

below. On the other hand, for larger γ, W γ
1 (g) gives less information about the

distance between Pg(Z) and PX . It is an open question how an optimal balance
of γ should be chosen. A more detailed analysis of the approximation quality
of the set of critic networks RD(Lf ,pf , sf ) could yield more insight. However,
this would need sharp upper bounds on the Lipschitz constants of R(Lf ,pf , sf )
and is a pure approximation problem, which is out of the scope of this paper.

3.2. Excess Bayes risk

To state the theoretical results on the excess Bayes risk Rn(ĝn) in (3.1), we have
to quantify the dependence structure of Xi, i = 1, . . . , n and Yi, i = 1, ..., n.
Basically, observations obtained at time steps which are far away from each
other have to be “asymptotically independent”. There exists a large variety of
weak and strong mixing conditions. We refer to [9] for a detailed summary of
conditions and basic properties. Here, we use absolutely regular β-mixing due
to the well-established empirical process theory (cf. [12] and [10]).

The β-mixing coefficient between two σ-algebras U ,V ⊆ A is defined by

β(U ,V) :=
1

2
sup

∑
(i,j)∈I×J

∣∣P(Ui ∩ Vj)− P(Ui)P(Vj)
∣∣,

where the supremum is taken over all finite partitions (Ai) and (Bj) U- and
V-measurable respectively. For a time series Xi, i = 1, ..., n, one defines

βX(0) = 1, βX(n) := β
(
σ(Xi; i ≤ 0), σ(Xi; i ≥ n)

)
, n ∈ N.
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Prominent examples of absolutely regular sequences are GARCH and ARMA
as well as linear processes (cf. [14, 9, 11]).

We now present the theoretical result for the excess Bayes risk for the un-
conditional WGAN estimator ĝn.

Theorem 3.4. Let φn = (nE)
− 2β

2β+dg . Suppose that F ≥ K ∨ 1, and

(i) log2(nE) log2(4dg ∨ 4β) ≤ Lg . log(nE),
(ii) mini=1,...,Lgpg,i & nEφn,

(iii) sg � nEφn log(nE)
(iv) Lf ≤ Lg, sf ≤ sg.

Suppose that there exist constants κ > 1, α > 1 such that for all k ∈ N, βX(k) ≤
κ · k−α. Then

ERn(ĝn) .
(sfLf log(sfLf )

n

)1/2
+ φ1/2n log(nE)3/2, (3.3)

and with probability at least 1− 4n−1 − 2( log(n)
n )

α−1
2 ,

Rn(ĝn) .
(sfLf log(sfLf )

n

)1/2
+ φ1/2n log(nE)3/2 +

( log(n)

n

)1/2
,

where the bounding constants may depend on characteristics of X1, κ, α and
d, dZ , dg, β,K, F .

Remark on dependency. Let us discuss this result in more detail. First
note that we basically only need that βX(k) is summable. The specific polyno-
mial rate of the decay only enters the large deviation result, and is negligible
if α ≥ 3. The statistical bounds are obtained by using empirical process theory
for absolutely regular β-mixing sequences and refined versions of Talagrand’s
inequality for independent variables from [18].

Remark on critic networks. The rate in (3.3) decomposes into two terms,
where the first term is determined by properties of the critic networks and the
second term stems from generator networks. Regarding the first term, the only
condition on the critic functions is given in (iv) which asks that the critic net-
works allow for less non-zero parameters and have less layers than the generator
networks. The lack of conditions is clear since there is no a priori approximation
task the critic networks have to fulfill in W1,n. However, there is some interest
in allowing for a large critic function class R(Lf ,pf , sf ) due to the results from
Lemma 3.1. This is discussed in more detail in Remark 3.5.

Remark on conditions. Assumptions (i)-(iii) stated in Theorem 3.4 are
conditions on the network structure of the generator networks which are allowed
(and needed) to grow with n. Basically, the lower bounds on Lg,pg, sg are used
to bound the approximation error of finding an element g̃ ∈ RG(Lg,pg, sg)
which approximates g ∈ G(dZ , dg, β,K) well, while the upper bounds control
the estimation error.

(i),(iii) ask the generator networks to have approximately log2(nE) layers and
allow for approximately

nEφn log(nE) = (nE)
dg

2β+dg log(nE)
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non-zero parameters (that is, entries in weight matrices and bias vectors). (ii)
asks the layers to have a certain minimal width. Letting the minimal width of
all layers grow polynomially in n seems rather unusual from a practical point
of view. This is only due to the approximation technique adopted from [28] and
can be improved.

Remark on convergence rate - dimensionality. In [19, Theorem 1] (cf.
also [23]) it was shown that β-Hölder smooth densities in the space Rd can be

estimated with a rate not faster than n−
β+1
2β+d with respect to the Wasserstein

distance. Note the additional β + 1 in the nominator instead of β as it is the
case, for instance, in standard nonparametric density estimation. Due to the
additional structural assumptions, out method yields (up to a log factor) a con-

vergence rate φn = n
− β

2β+dg with respect to the modified Wasserstein-distance
W1,n(ĝn). It does not depend on the underlying dimensionality dZ of the genera-
tion space nor the dimension d of the observation space but only on the reduced
dimension dg ≤ dZ . Even if dZ is chosen large (as it may occur in practice),
the generator network estimator ĝn can adapt to the unknown number dg of
relevant arguments without suffering from a curse of dimension.

Remark on convergence rate - generator size. In practice, along with
each sampled batch of data one batch of generated data Zi1, i = 1, ..., n is
produced, so that during the first epoch of training it holds that E = 1. In
subsequent epochs, the data set of fixed size n is reused, while the number of
generated samples keeps growing. If we assume that the generator networks
approximate the empirical optimizers at each step, the variable E introduced
in the estimator ĝn can be roughly seen as the number of training epochs and
indicates that more and more realizations of PZ are available to train ĝn. In
principle, E can be chosen arbitrarily large, therefore one can use arbitrarily
large generator architectures as long as one generates enough samples during
training. Then the performance saturates due to the limited data samples n
and the corresponding discriminator architecture (cf. (3.3)), but not due to the
generator capacity. However, note that one cannot directly take E as the number
of epochs. The reason is that in each epoch, the generator only sees a part of
the data Xi, i = 1, . . . , n (see Table 1).

Remark 3.5 (Selection of critic and generator). If there exists g∗ ∈ G(dZ , dg, β,K)
with Pg∗(Z) = PX , then the results of Theorem 3.4, (3.3) and Lemma 3.1, (3.2)
can be combined. In this case, one could ask for a suitable choice of γ ≥ 1 such
that the rates coincide, that is, an = φn. This then also leads to more precise
conditions on the discriminator network through Lemma 3.1. For simplicity,
choose E = 1. We see that equality is obtained with

β

2β + dg
=

γ

2γ + d
,

which is fulfilled for γ = β d
dg

, and leads to

EW γ
1 (ĝn) . φ1/2n log(n)3/2.
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3.3. Asymptotic confidence intervals

Based on the weak convergence, one can provide asymptotic confidence sets
for X to a given level α. For simplicity, suppose that X is one-dimensional. For
N ∈ N, let Z∗j , j = 1, ..., N be i.i.d. samples of PZ , independent of Xi, Zij used to
calculate the WGAN estimator ĝn from (2.4). Define the empirical distribution
function

F̂N,n(x) :=
1

N

N∑
j=1

1{ĝn(Z∗j )≤x}

and let FX denote the distribution function of X. Then the following result
holds.

Lemma 3.6. Suppose that PX = Pg∗(Z) for some g∗ ∈ G(dZ , dg, β,K) and
that PX is continuous. Let the assumptions of Lemma 3.1 with some γ ≥ 1 and
Theorem 3.4 hold. Then for any ρ > 0,

lim sup
n→∞

lim sup
N→∞

P(|F̂N,n(X)− FX(X)| ≥ ρ) = 0.

By the probability integral transform, this shows that F̂N,n(X) converges in
probability to a uniform distribution on [0, 1]. For fixed α ∈ (0, 1), this justifies
that the interval

In,N :=
{
x ∈ R : F̂N,n(x) ∈

(α
2
, 1− α

2

]}
(3.4)

which is built from the empirical α
2 and (1 − α

2 ) quantile curves of ĝn(Z∗j ),
j = 1, ..., N is an asymptotic (1− α)-confidence set for X since

P(X ∈ In,N ) = P
(
F̂N,n(X) ∈

(α
2
, 1− α

2

])
≈ P

(
FX(X) ∈

(α
2
, 1− α

2

])
= 1−α.

4. Theoretical results for the conditional WGAN

4.1. Results for the modified conditional Wasserstein distance

We now provide similar results as given in Lemma 3.1 and Lemma 3.2 for the
conditional WGAN formulation.

In analogy, firstly define,

W c,γ
1 (g) := sup

f∈Cγ([0,1]d+dY ,K),‖f‖L≤1

{
Ef(X,Y )− Ef(g(Z, Y ), Y )

}
.

Since we use the same approximation result [28], the connection of W c
1,n(g)

to W c,γ
1 (g) is essentially the same as in the unconditional case and we omit a

proof.

Lemma 4.1. Let an = n
− 2γ

2γ+d+dY , and suppose that
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• F ≥ 1,
• Lf ≥ log2(n) log2(4(d+ dY ) ∨ 4γ),
• mini=1,...,L pf,i & nan
• sf & log(n)nan,

where the constants in the asymptotic expression above depend on γ, d, dY . Then
there exists some constants C > 0,K ∈ (0, 1) only depending on γ, d, dY , F such
that

sup
f∈Cγ([0,1]d+dY ,K),‖f‖L≤1

inf
f̃∈RD(Lf ,pf ,sf )

‖f − f̃‖∞ ≤ Ca1/2n .

Especially, for any measurable g : RdZ → Rd,

W c,γ
1 (g) ≤W c

1,n(g) + Ca1/2n . (4.1)

In the case that PX,Y = Pg∗(Z,Y ),Y with some g∗ ∈ Gc(dZ , dY , D, dg, β,K),
the results for the excess Bayes risk (4.3) presented in the following Section 4.2
can be used to derive weak convergence with the help of the following lemma.

Lemma 4.2. Suppose that PX,Y = Pg∗(Z,Y ),Y for some g∗ ∈ Gc(dZ , dY , D, dg, β,K)
and let the assumptions of Lemma 3.1 hold with some γ ≥ 1. Let (ĝcn)n∈N be a
sequence of random variables with EW c

1,n(ĝcn)→ 0. Then

ĝcn(Z, Y )
d→ g∗(Z, Y ) = X. (4.2)

The lemma basically follows from Lemma 4.1 and the fact that Cγ([0, 1]d+dY )
forms a convergence-determining class. Remark 3.3 applies here as well. More-
over, from (4.2) one directly obtains the convergence of Pĝcn(Z,y) towards the
conditional distribution PX|Y=y.

4.2. Excess Bayes risk

We now provide a result for the excess Bayes risk of the conditional WGAN,

Rcn(g) := W c
1,n(g)− inf

g∈G(dZ ,dY ,D,dg,β,K)
W c

1,n(g). (4.3)

Theorem 4.3. Let φn = n
− 2β

2β+dg and β̃ ≥ D
dg
β. Suppose that F ≥ K ∨ 1, and

(i) log2(n)
(
2 log2(4dg ∨ 4β) + log2(4D ∨ 4β̃)

)
≤ Lg . log(n),

(ii) mini=1,...,Lgpg,i & nφn,
(iii) sg � nφn log(n)
(iv) Lf ≤ Lg, sf ≤ sg.

Suppose that there exist constants κ > 1, α > 1 such that for all k ∈ N,
βX,Y (k) ≤ κ · k−α. Then

ERcn(ĝcn) .
(sfLf log(sfLf )

n

)1/2
+ φ1/2n log(n)3/2, (4.4)
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and with probability at least 1− 4n−1 − 2( log(n)
n )

α−1
2 ,

Rcn(ĝcn) .
(sfLf log(sfLf )

n

)1/2
+ φ1/2n log(n)3/2 +

( log(n)

n

)1/2
,

where the bounding constants may depend on characteristics of (X1, Y1) and
κ, α, d, dZ , dY , D, dg, β, β̃,K, F .

All remarks for Theorem 3.4 apply here as well.

4.3. Asymptotic confidence intervals

For simplicity, suppose that X is one-dimensional. For N ∈ N, let Z∗j , j =

1, ..., N be i.i.d. samples of PZ , independent of Xi, Yi, Zi used to calculate the
WGAN estimator ĝcn from (2.5). Define the empirical distribution function

F̂ cN,n(x|y) :=
1

N

N∑
j=1

1{ĝcn(Z∗j ,y)≤x}

and let FX(x|y) = P(X ≤ x|Y = y) denote the distribution function of X
conditional on Y = y. The proof of the following result is similar to Lemma 4.2
and therefore omitted.

Lemma 4.4. Suppose that P(X,Y ) = P(g∗(Z,Y ),Y ) for some g∗ ∈ G(dZ , dY , dg, D, β,K)
and that FX(x|y) is continuous for PY -a.e. y. Let the assumptions of Lemma
4.1 with some γ ≥ 1 and Theorem 4.3 hold. Then for any ρ > 0 and for PY -a.e.
y,

lim sup
n→∞

lim sup
N→∞

P
(∣∣F̂N,n(X|y)− FX(X|y)

∣∣ ≥ ρ∣∣Y = y
)

= 0.

As before in the case of the unconditional WGAN, we can now construct
an asymptotic (1 − α) confidence set for X conditional on Y = y. For fixed
α ∈ (0, 1), let

In,N (y) :=
{
x ∈ R : F̂N,n(x|y) ∈

(α
2
, 1− α

2

]}
. (4.5)

Then for large n,N , one has

P(X ∈ In,N (y)|Y = y) = P(F̂N,n(X|y) ∈
(α

2
, 1− α

2

]
|Y = y)

≈ P(FX(X|y) ∈
(α

2
, 1− α

2

]
|Y = y) = 1− α.

5. High-dimensional time series forecasting

Earlier practical approaches of [26, 29] have shown that conditional WGANs
can be used to determine distributional forecasts of time series. In this section
we use our results to provide asymptotic confidence intervals.
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Suppose that we have given a time series Ai ∈ Rp, i = −r + 1, ..., n with
continuous distribution which is absolutely regular β-mixing with coefficients
βA(k), k ≥ 0. We are interested in forecasting a statistic

T (Ai), T : Rd → R continuous,

conditional on the finite past

Ai−1 := (Ai−1, ..., Ai−r) ∈ Rpr,

where r ∈ N denotes the number of lags considered. Let us furthermore assume
that there exists some β ≥ 1,K > 0, dg ∈ N and g∗c ∈ Gc(dZ , pr, dg, β,K) (cf.
Definition 2.2) such that

PT (Ar),Ar−1 = Pg
∗(Z,Ar−1),

that is, the distribution of T (Ar) is obtained from Ar−1, ..., A1 and some random
noise Z. Let ĝcn denote the conditional WGAN estimator from (2.5), that is,

ĝcn = arg min
g∈R(Lg,pg,sg)

Ŵ c
1,n(g)

with

Ŵ c
1,n(g) := sup

f∈R(Lf ,pf ,sf ),‖f‖L≤1

1

n

n∑
i=1

{
f(T (Ai),Ai−1)− f(g(Zi,Ai−1),Ai−1)

}
.

With the above definitions, (T (Ai),Ai−1) is absolutely regular β-mixing with
coefficients β(k) = βA((k − r) ∨ 0). Then Theorem 4.3 implies:

Corollary 5.1. Under the conditions (i)-(iv) of Theorem 4.3,

EW c
1,n(ĝcn) .

(sfLf log(sfLf )

n

)1/2
+ n

− β
2β+dg log(n)3/2.

We obtain confidence intervals for T (Ai) given Ai−1 = a as follows based on
the results for conditional WGANs from Section 4.3. For N ∈ N, let Z∗1 , ..., Z

∗
N

denote i.i.d. realizations of PZ . Define the empirical distribution function given
Ai−1 = a,

F̂N,n(t|a) :=
1

N

N∑
j=1

1{ĝcn(Z∗j ,a)≤t}.

Then for α ∈ (0, 1), the interval

IN,n(a) :=
{
t ∈ R : F̂N,n(t|a) ∈

(α
2
, 1− α

2

]}
is an asymptotic (1− α) confidence interval for T (Ai) given Ai−1 = a.
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WGAN-GP.
Require: β1, β2, learning rate α, penalty weight λ, batch size m,

number of critic iterations per generator iteration ncritic.
0: Initialize critic parameters θcritic and generator parameters θgen.
1: while θgen has not converged:
2: for t = 0, . . . , ncritic:

3: Sample a batch {X(i)}mi=1 ∼ PX from the real data.

4: Sample i.i.d. batches {Z(i)}mi=1 ∼ PZ , {U(i)}mi=1 ∼ U [0, 1].

5: Compute X̃(i) = U(i)X(i) + (1− U(i))gθgen (Z(i)).

6: Gc ← ∇θcritic
(

1
m

∑m
i=1 fθcritic (X(i))− 1

m

∑m
i=1 fθcritic (gθgen (Z(i)))

)
.

7: Penc ← λ · 1
m

∑m
i=1

(
||∇X̃ifθcritic ||2 − 1

)2
.

8: θcritic ← θcritic + α ·ADAM(Gc + Penc, θcritic, β1, β2).
9: end for

10: Sample an i.i.d. batch {Z(i)}mi=1 ∼ PZ .

11: Ggen ← −∇θgen
1
m

∑m
i=1 fθcritic (gθgen (Z(i)))

)
.

12: θgen ← θgen − α ·ADAM(Ggen, θgen, β1, β2).
13: end while

Table 1
The gradient descent algorithm proposed in [16], with adapted default values α = 0.0001,
λ = 0.1, m = 64, ncritic = 5, β1 = 0.5, β2 = 0.9 and PZ = U [0, 1]. The critic tries to

maximize the empirical Wasserstein distance, while the generator has the contrary objective.
The penalty term in line 7 softly enforces the Lipschitz constraint on the critic. For the first

25 and every 100th generator iterations, we train the critic for 100 iterations for each
generator iteration to ensure critic convergence and meaningful gradients. We additionally
apply 0.01 L2-weight decay to both networks to softly enforce boundedness of the network

parameters.

6. Simulation studies

In this section we study the behaviour of an approximation of the optimal esti-
mators ĝn from (2.4) and ĝcn from (2.5) obtained by gradient descent methods.
In all our experiments we use the WGAN-GP [16] algorithm with the adapted
default values given in Table 1, if not stated otherwise.

We now give some comments on the WGAN-GP algorithm. In opposite to
the original WGAN algorithm from [4] (cf. [1, Theorem 1]), which uses crude
weight clipping to guarantee a bounded Lipschitz constant of the critic networks,
WGAN-GP realizes the Lipschitz constraint in the definition of Ŵ1,n via a

penalty term. Furthermore, the critic is learned from Ŵ1,n using a gradient
descent method. Although the critic network may not obey ‖f‖L ≤ 1 by using
a penalty term, the equation

L · sup
‖f‖L≤1

Ef(X)− Ef(g(Z)) = sup
‖f‖L≤L

Ef(X)− Ef(g(Z)),

shows that it is enough to bound the Lipschitz constant of the critic by some (un-
known) constant. WGAN-GP therefore recovers the distributional stability of
the W1-distance, induced by metrizing weak convergence (cf. also [3]). However,
it should be noted that the new latent variables Zij generated in each training
epoch may slightly change the bound on the Lipschitz constant introduced by
the penalty term.
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For Vanilla GANs generator and discriminator training have to be carefully
balanced, because a discriminator that classifies too well does not yield informa-
tive gradients (the so-called saturation phenomenon). For WGANs, in contrast,
better critics yield better gradients. Hence one only has to train the critic “long
enough”, which is a huge practical advantage. We can confirm stable training
behaviour in all our experiments.

For the conditional setting, we simply replace all fθ(X
(i)) by fθ(X

(i), Y (i))
and all gθ(Z

(i)) by gθ(Z
(i), Y (i)) in Table 1.

In our simulation studies, we are particularly interested in how well ĝn(Z) or
ĝn(Z, y) approximate the underlying true distribution of X or X given Y = y,
respectively. We measure the approximation quality in our simulation studies
with

• the empirical optimal transport distance, from now on OT, computed with
the Python package POT [13], between an equal amount of real samples
Xi and generated samples ĝn(Zj) as an estimator for W1(PX ,Pĝn(Z)) (Xi

given Yi = y and ĝn(Zj , y) in the conditional case),
• empirical 95%-confidence intervals (we use the abbreviation CI95) as dis-

cussed in Section 3.3, Section 4.3 and Section 5, where we compute the
empirical 2.5%- and 97.5%-quantiles of a statistic evaluated on N gener-
ated samples.

6.1. Synthetic data

Models: To analyze the performance of the WGAN estimator in the uncondi-
tional case, we use the following model: We generate data

Xi = g∗(Zi), i = 1, ..., n (6.1)

via the transformation

g∗(z) =
(

sin(z1), sin(z2), sin(z3), exp(z1), z22 + 2z33 , cos(2πz1 · z2 · z3),

z1 · z2 · z3, (z1 + z2 + z3)2, z1 + z2 + z3, 2x
4
1 − x32

)
,

where Zi are i.i.d. uniformly distributed on [0, 1]3. That is, d = 10 and dZ = 3.
Here, g is designed to contain a variety of smooth functions but also similarities
between some of the coordinates.

For the conditional WGAN estimator, we consider the following model: With
d = 10, dZ = 7 and dY = 3, we simulate

Xi = g∗c (Zi, Yi), i = 1, ..., n, (6.2)

where g∗c = g∗ ◦ h with

h(z1, . . . , z7, y1, y2, y3) := (z1 + z22 + z33 , z4 · z5 + z6 · z7, sin(y1)− y2 · y3),

and (Zi, Yi), i = 1, ..., n are i.i.d. uniformly distributed on [0, 1]10. Here, g∗c has
a encoder-decoder structure according to Definition 2.2.
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For simplicity, we consider independent observations Zi, Yi in both situations
(that is, no serial correlation along i = 1, ..., n).

Results: We examine the convergence behaviour of WGANs for increasing
sample size n → ∞ in Table 2. In the unconditional case, we construct confi-
dence intervals for the statistic T (X1), where T (x) =

∑10
j=1 xj , using N = 1000

generated samples, by computing the empirical 2.5%- and 97.5%-quantiles of
{T (ĝ(Zj))}j=1,...,N (as in (3.4)). In the conditional case, we approximate the
statistic T (X|Y = y) for y = (0.5, 0.5, 0.5), using N = 1000 generated samples,
by computing the empirical 2.5%- and 97.5%-quantiles of {T (ĝ(Zj , y))}j=1,...,N

(as in (4.5)). Note that the coverage of the constructed confidence intervals
approaches 95%, while the optimal transport distance decreases. According to
our results, the network sizes should grow with n, but we use a fixed architec-
ture that performs well for all given n to ensure comparability. Good coverage
probabilities are already achieved for n = 960 or n = 3200, respectively. This
highlights the fact that the WGAN is capable of detecting the sparse structure
in the models (6.1) and (6.2) and realizes a faster convergence rate as announced
in Theorem 3.4 and Theorem 4.3.

Measured
quantity

Number of samples
64 320 960 3200 9600

CI95, unc. 47.92 (5.72) 52.26 (6.24) 96.16 (1.18) 94.50 (0.86) 94.56 (0.84)
OT, unc. 1.634 (0.077) 1.630 (0.102) 0.970 (0.130) 0.412 (0.029) 0.342 (0.026)

CI95, cond. 24.96 (3.13) 23.2 (1.67) 45.32 (7.27) 94.76 (1.93) 94.78 (0.97)
OT, cond. 7.181 (0.187) 6.720 (0.392) 7.670 (0.307) 1.967 (0.562) 1.297 (0.341)

Table 2
Shows the coverage probability (in %) of empirical 95%-confidence intervals for the sum of

all components T (x) =
∑10
j=1 xj and the empirical optimal transport distance, each

computed over N = 1000 new i.i.d. samples, after 700 epochs of training. We train each
model 5 times with different i.i.d. data.The left number denotes the mean over all runs,

while the number in parentheses denotes the empirical standard deviation. We use a
discriminator with 5 hidden layers of size 128 and a generator with 3 hidden layers of size

32.

6.2. Real data application

Practical approaches for time series generation using conditional GANs have
been conducted by [26] using conditional vanilla GANs and [29] using conditional
WGANs. These works emphasize the potential of using generated data for data
augmentation in other tasks, given small data sets (few shot learning).

For a real world simulation study we consider the mean temperatures Ai ∈
Rd, i = 1, ..., n = 4779 of d = 32 German cities provided by the Deutscher
Wetterdienst (German Metereological Service)1. Note that the chosen cities are
spread throughout Germany, which can be seen in Figure 3.

In total we observe 4779 temperature values for each city over the period from
2006/07/01 to 2019/07/31. In the notation of Section 5, given the temperatures

1https://opendata.dwd.de/climate_environment/CDC/observations_germany/climate/

daily/kl/historical

https://opendata.dwd.de/climate_environment/CDC/observations_germany/climate/daily/kl/historical
https://opendata.dwd.de/climate_environment/CDC/observations_germany/climate/daily/kl/historical
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Fig 3: The authors of [25] collected weather data from the cities of Berlin, Braun-
schweig, Bremen, Chemnitz, Cottbus, Dresden, Erfurt, Frankfurt, Freiburg,
Garmisch-Patenkirchen, Göttingen, Münster, Hamburg, Hannover, Kaiser-
slautern, Kempten, Köln, Konstanz, Leipzig, Lübeck, Magdeburg, Cölbe,
Mühldorf, München, Nürnberg, Regensburg, Rosenheim, Rostock, Stuttgart,
Würzburg, Emden and Mannheim.

of several cities of the previous day Ai−1 (so using only one lag r = 1), we predict
the temperature in Berlin T (Ai) = Ai1 of each day, i.e. r = 1 and T (x) = x1.
The first day is not predicted. We use the first ntrain = 4300 days for training
and the remaining ntest = 478 days from 2018/04/10 to 2019/07/31 for testing.
We train cWGANs with 4-dimensional standard normal noise and use Ai−1 as
conditional information. We train 3 different models.

(M1) The first model only predicts the temperature in Berlin and Ai−1 only
consists of the temperatures in Berlin, Braunschweig and Bremen of the
previous day.

(M2) The second model only predicts the temperature in Berlin but Ai−1 con-
sists of the temperatures in all 32 cities of the previous day.

(M3) The third model predicts the temperatures in all 32 cities andAi−1 consists
of the temperatures in all 32 cities of the previous day. The quality of the
confidence intervals is only assessed for 1 city, namely Berlin.

For all models we use the generators with 3 hidden layers with 10 neurons each
and a discriminator with 5 hidden layers with 32 neurons each. Table 3 shows the
progression over 1000 epochs of training. Table 4 complements these illustrations
with OT and CI95 values after 1000 epochs of training. The confidence intervals
IN,n(Ai−1) (cf. (4.5)) for T (Ai) are constructed from N = 1000 realizations of
PZ when i belongs to the training set and from N = 10000 realizations of PZ
when i belongs to the test set.

The optimal transport distance is computed jointly over the Ai−1 and the



(M1) (M2) (M3)

Table 3
Training process of a cWGAN depicted after 1000 epochs over temperature data for the

models (M1)-(M3).
The first two rows show the estimated optimal transport distance between real and generated
data evaluated 10 times on 1 batch from the training set (black) and test set (red), over 150

and 1000 epochs respectively. Depicted is the mean and a ±σ-confidence band. The other
two rows show the actual mean temperatures in Berlin (black) and the average generated

prediction (blue) with a ±3σ-confidence band over 1000 generated points per time step, for
the first 50 days of the test set and the whole test set respectively.
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predicted/real temperatures in Berlin and still has high variance as the dimen-
sion is 4 for (M1) and 33 for (M2) and (M3). Since in the first model Ai−1 is
only 3-dimensional, the optimal transport distance is only comparable between
the second and third model.

Three to Berlin All to Berlin All to All

Test OT, 1000 epochs 1.39 2.38 2.37
Empirical 95%-confidence, train 92.60% 91.14% 74.02%
Empirical 95%-confidence, test 89.96% 89.54% 70.71%

Table 4
The first row computes the empirical optimal transport distance (OT) on the whole test set.

Rows 2 and 3 show the respective proportion of T (Ai) lying in the intervals IN,n(Ai−1)
between the empirical 2.5%- and 97.5%-quantiles, for the training and test set, respectively.

Note that in all scenarios, the generator firstly learns the predictions with
overconfidence. For (M1), the training data lies much more densely in the
Ai−1-space. (M1) learns the distribution much faster, but eventually the (M2)-
model achieves comparable performance. The most complex (M3)-model takes
the longest to converge but already performs decently considering that it per-
forms a 32-dimensional prediction with the same small generator architecture.
To have comparable results, we used 1000 training epochs for the estimators in
Table 4. However, the quality of the estimators may still increase for more train-
ing epochs. For instance, after 2000 epochs of training, we achieve 2.35 OT and
86.19% coverage on the test set for the temperature in the city Berlin in model
(M3). Overall, the results are quite satisfying and motivate that the cWGAN
estimator is able to find some sparse underlying structures in the data.

7. Conclusion

To our knowledge, this paper is the first where convergence rates for the excess
Bayes risk of Wasserstein GANs and conditional Wasserstein GANs are derived
under structural assumptions on the space of generators.

We have formalized the empirical WGAN objective with growing critic net-
works and have shown that this objective still metrizes weak convergence. Our
results yield recommendations on the size of generator networks and unveil the
potential use of conditional WGANs in high-dimensional time series forecast-
ing, in particular the construction of confidence intervals. All our results hold
for dependent data, where the dependence is measured with absolutely regu-
lar β-mixing. Both our synthetic and real world simulations demonstrate good
empirical coverage for confidence intervals in multidimensional applications.

Additionally, we have included a first approach to formalize the availability
of a growing number of observations when training is performed with multi-
ple epochs. The corresponding result justifies the use of very large generator
networks without suffering from slow convergence rates. Our attempt could be
explored in other contexts and extended to the conditional case. In future work,
one could also try to study the convergence behaviour of local instead of global
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minimizers of the empirical WGAN objectives. Furthermore, it would be inter-
esting to include the gradient penalty in the theoretical results and use other
GAN losses or network architectures, such as the Groupsort activation function
[1] for the critic. It would be interesting to refine the approximation results
from [28] to gain more insight into the theoretical properties of our modified
Wasserstein distance W1,n.
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Appendix A: Proofs of Section 3

Proof of Lemma 3.2. By Lemma 3.1,

EW γ
1 (ĝn) ≤ EW1,n(ĝn) + Cφn → 0.

Let f ∈ Cγ([0, 1]d, 1) be arbitrary. By independence of Z and ĝn(·), it follows
that E[E[f(g(Z))]

∣∣
g=ĝn

] = E[E[f(ĝn(Z))|ĝn]] = Ef(ĝn(Z)). Thus

|Ef(X)− Ef(ĝn(Z))| ≤ EW γ
1 (ĝn)→ 0. (A.1)

We now show weak convergence ĝn(Z)
d→ X. Let A ⊂ [0, 1]d be a closed set (and

thus compact). Let ε > 0. Define ρε,A(x) := 1 − ϕ(d(x,A)
ε ), where d(x,A) :=

infy∈A ‖x − y‖∞ and ϕ : R → [0, 1] is an arbitrary infinitely differentiable
function with ϕ(x) = 0 for x ≤ 0 and ϕ(x) = 1 for x ≥ 1, for instance one may
define ϕ(x) = e−1/x · (e−1/x + e−1/(1−x))−1 for x ∈ [0, 1].

Note that 1A(x) ≤ ρε,A(x). Furthermore, for d(ε) > 0 small enough, d(ε) ·
ρε,A ∈ Cγ([0, 1]d, 1). By these arguments and (A.1),

P(ĝn(Z) ∈ A) ≤ Eρε,A(ĝn(Z)) = d(ε)−1E[d(ε)ρε,A(ĝn(Z))]

→ d(ε)−1E[d(ε)ρε,A(X)] = Eρε,A(X).

We conclude that lim supn→∞ P(ĝn(Z) ∈ A) ≤ Eρε,A(X). Since ρε,A(x) →
1A(x) for ε→ 0, the dominated convergence theorem implies lim supn→∞ P(ĝn(Z) ∈
A) ≤ P(X ∈ A). The result now follows from the portmanteau lemma for weak
convergence.

Proof of Lemma 3.6. Fix x ∈ R. By the law of large numbers (applied condi-
tionally on ĝn), we have that almost surely, for N →∞,

F̂N,n(x)→ P(ĝn(Z) ≤ x|ĝn). (A.2)

We now conduct a similar argumentation as in the proof of Lemma 3.2 based

on the stochastic convergence W γ
1 (ĝn)

p→ 0. Let A ⊂ [0, 1] be a closed subset.
Then

P
(
P(ĝn(Z) ∈ A|ĝn)− P(X ∈ A) ≥ ρ

)
≤ P

(
E[d(ε)ρε,A(ĝn(Z))|ĝn]− E[d(ε)ρε,A(X)] ≥ ρ

2
d(ε)

)
+P(Eρε,A(X)− P(X ∈ A) ≥ ρ

2

)
.

While the second summand is 0 for ε > 0 small enough, the first summand tends

to zero by W γ
1 (ĝn)

p→ 0. This shows that

lim
n→∞

P
(
P(ĝn(Z) ∈ A|ĝn)− P(X ∈ A) ≥ ρ

)
= 0.
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Using typical proof strategies from the portemanteau lemma, we first see that
for any open subset U ⊂ [0, 1], and any ρ > 0,

lim
n→∞

P
(
P(ĝn(Z) ∈ U |ĝn)− P(X ∈ U) ≤ −ρ

)
= 0.

and for any x ∈ [0, 1] which is a continuity point of FX and any ρ > 0,

lim
n→∞

P
(∣∣P(ĝn(Z) ≤ x|ĝn)− FX(x)

∣∣ ≥ ρ) = 0. (A.3)

From (A.2) and (A.3) we obtain that for ρ > 0 and any x ∈ R,

lim sup
n→∞

lim sup
N→∞

P
(∣∣F̂N,n(x)− FX(x)

∣∣ ≥ ρ)
≤ lim sup

N→∞
P
(∣∣F̂N,n(x)− P(ĝn(Z) ≤ x|ĝn)

∣∣ ≥ ρ

2

)
+ lim sup

n→∞
P
(∣∣P(ĝn(Z) ≤ x|ĝn)− FX(x)

∣∣ ≥ ρ

2

)
= 0.

By continuity of FX , standard decomposition arguments from the Polya theorem
about uniform convergence of distribution functions provide

lim sup
n→∞

lim sup
N→∞

P
(

sup
x∈[0,1]

∣∣F̂N,n(x)− FX(x)
∣∣ ≥ ρ) = 0.

The result of the lemma now follows for plugging in x = X.

Appendix B: Error Decomposition

B.1. Unconditional WGAN: Basic inequality

We abbreviate G = G(dZ , dg, β,K) andRG := R(Lg,pg, sg),RD = R(Lf ,pf , sf ).
Recall from (2.4) that

ĝn = arg min
g∈RG

Ŵ1,n(g).

Proposition B.1 (WGAN: Basic inequality). It holds that

W1,n(ĝn)− inf
g∈G

W1,n(g) ≤
√
d ·An + 2 · En,

where

An := sup
g∈G

inf
g̃∈RG

‖g − g̃‖∞, (B.1)

En := sup
f∈RD

|(P̂Xn − PX)f |+ sup
g∈RG,f∈RD

|(P̂ZnE − PZ)(f ◦ g)|. (B.2)
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Proof of Proposition B.1. First, we have

W1,n(ĝn)− inf
g∈G

W1,n(g) ≤ en + an,

where
en := W1,n(ĝn)− inf

g∈RG
W1,n(g)

is the estimation error and

an := inf
g∈RG

W1,n(g)− inf
g∈G

W1,n(g)

is the approximation error. Note that An is upper bounded (not in absolute
value!) as follows:

an ≤ sup
g∈G

inf
g̃∈RG

|W1,n(g)−W1,n(g̃)|. (B.3)

Since all functions f in the supremum in W1,n satisfy ‖f‖L ≤ 1, we have

|W1,n(g)−W1,n(g̃)|
≤

∣∣ sup
f∈RD,‖f‖L≤1

{
Ef(X)− Ef(g(Z))

}
− sup
f∈RD,‖f‖L≤1

{Ef(X)− Ef(g̃(Z))
}∣∣

≤ sup
f∈RD,‖f‖L≤1

E|f(g(Z))− f(g̃(Z))|

≤
√
d‖g − g̃‖∞.

We conclude from (B.3) that

an ≤
√
d inf
g∈RG

sup
g̃∈G
‖g − g̃‖∞.

We now investigate the estimation error En. Let ε > 0. Then there exists g∗ ∈
RG with infg∈GW1,n(g) ≤W1,n(g∗) + ε. We obtain

en = W1,n(ĝn)− inf
g∈G

W1,n(g) ≤W1,n(ĝn)−W1,n(g∗)+−ε. (B.4)

In order to bound W1,n(ĝn)−W1,n(g∗), note that by the minimization property
of ĝn,

W1,n(ĝn)−W1,n(g∗)

= Ŵ1,n(ĝn)− Ŵ1,n(g∗)

−
(
{Ŵ1,n(ĝm,n)−W1,n(ĝm,n)} − {Ŵ1,n(g∗)−W1,n(g∗)}

)
≤ 2 sup

g∈RG

∣∣Ŵ1,n(g)−W1,n(g)
∣∣.

Letting ε ↓ 0, we obtain from (B.4) that

en ≤ 2 sup
g∈RG

∣∣Ŵ1,n(g)−W1,n(g)
∣∣. (B.5)
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Note that

sup
g∈RG

|Ŵ1,n(g)−W1,n(g)|

≤ sup
g∈RG

∣∣∣ sup
f∈RD

{
(P̂Xn − PX)f − (P̂ZnE − PZ)(f ◦ g)

}∣∣∣
≤ sup

f∈RD
|(P̂Xn − PX)f |+ sup

g∈RG,f∈RD
|(P̂ZnE − PZ)(f ◦ g)|

Insertion into (B.5) yields the assertion.

B.2. Approximation error

To bound the approximation error An, we use the approximation theory from
[28] and statements about the Lipschitz constant in [25].

Theorem B.2 ([28], Theorem 5 and [25], Theorem 9.14). For all

h ∈ Cβ([0, 1]r,K), k ≥ 1 and N ≥ (β + 1)r ∨ (K + 1)er,

there exists a network

h̃ ∈ R
(
L, (r, 6(r + dβe)N, . . . , 6(r + dβe)N, 1), s,∞

)
with

L = 8 + (k + 5)(1 + dlog2(r ∨ β)e) and s ≤ 141(r + β + 1)3+rN(k + 6),

such that,

‖h− h̃‖L∞([0,1]r) ≤ (2K + 1)(1 + r2 + β2)6rN2−k +K3βN−β/r.

Furthermore, h̃ satisfies for any x, y ∈ [0, 1]r that

|h̃(x)− h̃(y)| ≤ Lip(N, k) · |x− y|∞,

where
Lip(N, k) := 2βF (K + 1)er(24r62rN2−k + 3r).

Lemma B.3. Let β ≥ 1, dg ∈ N, E ∈ N. Let N ≥ (β + 1)dg ∨ (K + 1)edg .
If RG = R(Lg,pg, sg) satisfies F ≥ K ∨ 1 and

Lg ≥ log2(nE) log2(4dg ∨ 4β), min
i=1,...,Lg

pi & dN and sg & dN log2(nE),

where the bounding constants only depend on β, dg, then An from (B.1) satisfies
that for n large enough,

An .
N

nE
+N−β/dg ,

where the bounding constants only depend on β, dg and K.
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Proof of Lemma B.3. Given g ∈ G, we can write gi ∈ Cβ([0, 1]dg ,K), since each
component function only depends on dg arguments. Applying Theorem B.2 with
k = dlog2(nE)e to each component function yields that there exists a g̃ in the
class

R (L, (dg, 6(dg + dβe)N, . . . , 6(dg + dβe)N, 1), sg,∞) ,

such that ||gi − g̃i||∞ . N2−k +N−β/dg , where L = kdlog2(4dg ∨ 4β)e, s . Nk
and the bounding constants only depend on K, dg, β.
Thus a network computing all g̃ := (g̃i)i=1,...,d in parallel lies in the class

R (L, (dg, 6d(dg + dβe)N, . . . , 6d(dg + dβe)N, d), ds,∞) ,

and it holds that

||g − g̃||∞ . N2−k +N−β/dg . (B.6)

g̃ may not satisfy ‖g̃‖∞ ≤ F . However, g̃◦ := (‖g‖∞‖g̃‖∞ ∧ 1)g̃ still fulfills g̃◦ ∈
R(L, p, s) and ‖g̃◦‖∞ ≤ ‖g‖∞ ≤ K ≤ F . Due to ‖g̃◦ − g‖∞ ≤ 2‖g̃ − g‖∞, (B.6)
still holds for g̃◦ with changed constants.

B.3. Estimation error

To upper bound the entropy bracketing numbers of the neural network sets
R(L,p, s), we use the following Lemma taken from [28].

For a class F ⊂ {f : Rr → R measurable} and some norm ‖ · ‖ on F , we
denote by N[](ε,F , ‖ · ‖) the number of ε-brackets which are needed to cover F .
Here, an ε-bracket [l, u] is a set [l, u] = {f ∈ F|∀x ∈ Rr : l(x) ≤ f(x) ≤ u(x)}
such that ‖u− l‖ ≤ ε.

The bracketing entropy integral of F with respect to ‖ · ‖ is denoted by

J[](δ,F , ‖ · ‖) =

∫ δ

0

√
1 + logN[](ε,F , ‖ · ‖) dε.

The covering numbersN(ε,F , ‖·‖) denote the least number of elements v1, ..., vm ∈
F such that F ⊂

⋃m
j=1{y ∈ F : ‖y− vj‖ < ε}. Accordingly, we define the cover-

ing entropy integral J(δ,F , ‖ · ‖) =
∫ δ
0

√
1 + logN(ε,F , ‖ · ‖) dε. We need both

bracketing and covering numbers since the approximation results in [28] were
defined in terms of covering numbers while the empirical process results of [10]
are in terms of bracketing numbers. However, there is a simple connection via

N[](δ,F , ‖ · ‖) ≤ N(
δ

2
,F , ‖ · ‖). (B.7)

For mixing coefficients βX(k), k ∈ N0, [12] defined the ‖f‖2,β-norm as follows:
Let β−1X be the cadlag inverse of βX(t) = β(btc) for t ≥ 1 and βX(t) = 1
otherwise. Let Qf be the inverse of the tail function t 7→ P(|f(X1)| > t). Define

‖f‖2,β =
(∫ 1

0

β−1X (u)Qf (u)2du
)1/2

.
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In [12, Lemma 1] it is stated that for B :=
∑∞
k=0 βX(k), one has

‖f‖2,β ≤ B1/2 · ‖f‖∞. (B.8)

Lemma B.4 ([28], Lemma 5). For all δ > 0, it holds that

log
(
N
(
δ,R(L,p, s,∞), ‖ · ‖∞

))
≤ (s+ 1) log

(
2
L+ 1

δ

( L+1∏
l=0

(pl + 1)
)2)

.

In the following, we use the following abbreviation

γ(L,p, s) := 2(s+ 1) log
(
4(L+ 1)

L+1∏
l=0

(pl + 1)
)
. (B.9)

The following lemma is the basic result we use to bound the estimation error
both in expectation and with high probability. It makes use of maximal inequal-
ities and large deviation bounds derived in Section C for mixing sequences.

Lemma B.5. Suppose that there exist constants κ > 1, α > 1 such that for all
k ∈ N, βX(k) ≤ κ · k−α. Suppose that

γ(L,p, s) ≤ n.

Then there exists a constant C > 0 only depending on characteristics of (Xi)
and B,F, κ, α such that

E∗ sup
f∈R(L,p,s)

|(P̂Xn − PX)f | ≤ C ·
(γ(L,p, s)

n

)1/2
. (B.10)

Furthermore, with probability at least 1 − 2n−1 − ( log(n)
n )

α−1
2 and a different

constant C > 0 depending on the same quantities,

sup
f∈R(L,p,s)

|(P̂Xn − PX)f | ≤ C ·
[(γ(L,p, s)

n

)1/2
+
( log(n)

n

)1/2]
. (B.11)

Proof of Lemma B.5. We abbreviate R = R(L,p, s, F ). Using Lemma B.4, we
get for all δ > 0,

logN(δ,R, ‖ · ‖∞) ≤ γ(L,p, s)− (s+ 1) log(δ).

Using the simple bound
√
a+ b ≤

√
a +
√
b, the bracketing integral is upper

bounded by

J(δ,R, ‖ · ‖∞) =

∫ δ

0

√
1 + γ(L,p, s)− (s+ 1) log(ε)dε

≤
∫ δ

0

(
1 +

√
γ(L,p, s)

)
dε+

√
s+ 1

∫ 1

0

√
− log(ε)dε

= δ +
√
γ(L,p, s)δ +

√
(s+ 1)π

2
≤ c · γ(L,p, s)1/2(1 + δ),
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where c ≥ 1 is some universal constant.
By Lemma C.1, we have with some constants K1,K2 > 0 only depending on

characteristics of X1,
E∗ sup

f∈R

∣∣(P̂Xn − PX)f
∣∣ ≤ rn,

where

rn := K1 · n−1/2J[](F,R, ‖ · ‖∞) +K2F ·
(1 ∨N[](2BF,R, ‖ · ‖∞)

n

) α
α+1

≤ K1 · n−1/2J(
F

2
,R, ‖ · ‖∞) +K2F ·

(1 ∨N(BF,R, ‖ · ‖∞)

n

) α
α+1

≤ C ·
((γ(L,p, s)

n

)1/2
+
(γ(L,p, s)

n

) α
α+1

)
,

and C > 0 depends on F,B,K1,K2. Since γ(L,p, s) ≤ n and α > 1, the second
summand is dominated by the first. This yields (B.10).

Note that R(L,p, s, F ) is separable in {f : [0, 1]d → R meas., ‖f‖∞ ≤ F},
therefore supf∈R(L,p,s)

∣∣(P̂Xn − PX)f
∣∣ is measurable and

P
(

sup
f∈R(L,p,s)

∣∣∣(P̂Xn −PX)f
∣∣∣ > x

)
≤ sup
S⊂R(L,p,s) countable

P
(

sup
f∈S

∣∣∣(P̂Xn −PX)f
∣∣∣ > x

)
.

By Lemma C.5, there exists some constant C2 > 0 depending on F,B, κ, α such
that

P
(

sup
f∈R(L,p,s)

∣∣∣(P̂Xn −PX)f
∣∣∣ ≥ C2 ·

(
rn+(

x

n
)1/2 +

x

n
·z−

1
α+1
))
≤ 2 exp(−x)+

nz

x
.

With x = log(n) and z =
( log(n)

n

)α+1
2 , we obtain

P
(

sup
f∈R(L,p,s)

∣∣∣(P̂Xn − PX)f
∣∣∣ ≥ C2 ·

(
rn + 2(

log(n)

n
)1/2

))
≤ 2

n
+
( log(n)

n

)α−1
2

,

which yields (B.11).

Lemma B.6 (Upper bound on the estimation error). Suppose that there exist
constants κ > 1, α > 1 such that for all k ∈ N, βX(k) ≤ κ · k−α. Suppose that
γ(Lf ,pf , sf ) ≤ n and γ(Lg ∨Lf ,pg ∨pf , sg ∨ sf ) ≤ nE. Then there exists some
constant C > 0 only depending on characteristics of X1 and F, κ, α such that

EEn ≤ C ·
[(γ(Lf ,pf , sf )

n

)1/2
+
(γ(Lg ∨ Lf ,pg ∨ pf , sg ∨ sf )

nE

)1/2]
.

Furthermore, with probability at least 1− 4n−1 − 2( log(n)
n )

α−1
2 ,

En ≤ C·
[(γ(Lf ,pf , sf )

n

)1/2
+
(γ(Lg ∨ Lf ,pg ∨ pf , sg ∨ sf )

nE

)1/2
+
( log(n)

n

)1/2]
.
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Proof of Lemma B.6. With g ∈ RG, f ∈ RD, we have

f ◦ g ∈ R := R(Lg + Lf + 1, (dz, pg1, . . . , pgLg , d, pf1, . . . , pfLf , 1), sg + sf ).

Note that there exists some universal constant c > 0 such that

γ(Lg + Lf + 1, (dz, pg1, . . . , pgLg , d, pf1, . . . , pfLf , 1), sg + sf )

≤ c · γ(Lf ∨ Lg,pf ∨ pg, sf ∨ sg),

where x ∨ y of vectors x, y is meant component-wise.
We now apply Lemma B.5 to both summands of En. The first summand

reads
sup
f∈RD

∣∣(P̂Xn − PX)f
∣∣

with β-mixing Xi. The second summand of En is upper bounded by

sup
h∈R

∣∣(P̂ZnE − PZ)h
∣∣

with i.i.d. Zi, that is, β-mixing coefficients βZ(k) = 1{k=0} (k ≥ 0).

Proof of Theorem 3.4. By Proposition B.1,

Rn(ĝn) ≤
√
d ·An + 2 · En.

Under the given assumptions on Lf ,pf , sf , we conclude from (B.9) (cf. also
Remark 1 in [28]) that

γ(Lf ,pf , sf )

≤ 2(sf + 1) log
(
2Lf+3(Lf + 1)p0pL+1s

Lf
f

)
. sfLf log(sfLf ).

Under the given assumptions on Lg,pg, sg, we conclude by Lemma B.3 for
N large enough that

An .
N

nE
+N−β/dg .

Thus by Lemma B.6,

ERn(ĝn) .
(sfLf log(sfLf )

n

)1/2
+N−β/dg

+
( (sf ∨ sg)(Lf ∨ Lg) log((sf ∨ sg)(Lf ∨ Lg))

nE

)1/2
.

Choose N = dC1nEφne, where C1 is large enough such that N ≥ (β + 1)dg ∨
(K + 1)edg , then

ERn(ĝn) .
(sfLf log(sfLf )

n

)1/2
+ φ1/2n log(nE)3/2.

The large deviation statement is immediate from Lemma B.6.
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B.4. Adaptation to the conditional case

We follow the same procedure as in the unconditional case with slight adap-
tations. We abbreviate Gc := Gc(dZ , dY , dg, β,K) and RG := R(Lg,pg, sg),
RD = R(Lf ,pf , sf ) as before. Recall from (2.5) that

ĝcn := arg min
g∈RG

Ŵ c
1,n(g).

Proposition B.7 (cWGAN: Basic inequality). It holds that

W c
1,n(ĝcn)− inf

g∈Gc
W c

1,n(g) ≤
√
d ·Acn + 2 · Ecn,

where

Acn := sup
g∈Gc

inf
g̃∈RG

‖g − g̃‖∞, (B.12)

Ecn := sup
f∈RD

|(P̂X,Yn − PX,Y )f |

+ sup
g∈RG,f∈RD

∣∣∣ 1
n

n∑
i=1

{f(g(Zi, Yi), Yi)− Ef(g(Z1, Y1), Y1)}
∣∣∣.

(B.13)

Proof of Proposition B.7. Proceed as in the proof of proposition B.1. Note that

|W c
1,n(g)−W c

1,n(g̃)|
≤ sup

f∈RD,‖f‖L≤1
E|f(g(Z, Y ), Y )− f(g̃(Z, Y ), Y )|

≤
√
d‖g − g̃‖∞,

stays the same.

Lemma B.8. Let β ≥ 1, dg ∈ N, β̃ ≥ D
dg
β. Suppose that for N large enough,

• Lg ≥ log2(n)
(

2 log2(4dg ∨ 4β) + log2(4D ∨ 4β̃)
)
,

• mini=1,...,Lg pi & N,
• sg & N log2(n),

then Acn from (B.12) satisfies

Acn .
N

n
+N−β/dg , (B.14)

Here, the bounding constants only depend on β̃, β, dg, D, d and K.

Proof of Lemma B.8. The proof basically follows from Theorem B.2 with k =
dlog2(n)e along the same lines as in the proof of Theorem 1 in [28]. Let g ∈
Gc = Gc(dZ , dY , dg, β,K). For ease of notation, let

β = (β0, β1, β2) := (β, β̃, β), t = (t0, t1, t2) := (dg, D, dg)
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and d = (d0, d1, d2, d3) := (dZ + dY , D, dg, d). We furthermore abbreviate g0 :=
genc,0, g1 := genc,1 and g2 := gdec.

First transform the component functions g0, g1 as in [28, Proof of Theorem 1]
to map to [0, 1]d1 and [0, 1]d2 respectively. Now by Theorem B.2, for i = 0, 1, 2
we find functions

g̃i ∈ R(Li, (di,pi, di+1), di+1si),

where

Li = 8 + (k + 5)(1 + log2(ti ∨ βi)),
pi = (di, 6di+1(ti + dβie)N, . . . , 6di+1(ti + dβie)N, di+1) ∈ RLi+2,

si ≤ 141(ti + βi + 1)3+tiN(k + 6)

such that

‖gi − g̃i‖∞ ≤ (2K + 1)(1 + t2i + β2
i )6tiN2−k +K3βiN

βi
ti .

Apply 1− (1− g̃ij)+ for i ∈ {0, 1} so that the network outputs lie in [0, 1]di+1 .
This does not increase the distance to gi and adds 4 non-zero parameters per
output dimension and 2 layers. The composed network g̃ := g̃2 ◦ σ(g̃1) ◦ σ(g̃0)
satisfies

g̃ ∈ R(L̄, p̄, s̄)

with

L̄ :=

2∑
i=0

Li + 6,

p̄ := (dZ + dY , p0, . . . , p0, D, p1, . . . , p1, dg, p2, . . . , p2, d),

s̄ :=

2∑
i=0

di+1(si + 4).

and, in analogy to [28, Section 7.1, Lemma 3],

‖g̃ − g‖∞ ≤ C max
i=0,1,2

{N
n

+N
− βiti

}
= C

{N
n

+N
− β
dg
}

(B.15)

for a constant C that only depends on β,d,K. Up to now, g̃ may not satisfy

‖g̃‖∞ ≤ F . However, g̃◦ := (‖g‖∞‖g̃‖∞ ∧ 1)g̃ still fulfills g̃◦ ∈ R(L̄, p̄, s̄) and ‖g̃◦‖∞ ≤
‖g‖∞ ≤ K ≤ F . Due to ‖g̃◦ − g‖∞ ≤ 2‖g̃ − g‖∞, (B.15) still holds for g̃◦ with
changed constants.

We now provide an analogeous result for Lemma B.6 in the conditional case.
If Zi, i ∈ Z is a sequence of independent random variables and independent of
(Xi, Yi), i ∈ Z, then β-mixing of (Xi, Yi) implies β-mixing of (Yi, Zi) with the
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same coefficients. The basic change is that the supremum in the second summand
in Ecn from (B.13) runs over a different class of neural networks, namely

Rfg =
{
h : [0, 1]dZ+dY → R, (z, y) 7→ f(g(z, y), y)

∣∣∣ g ∈ RG, f ∈ RD, ‖f‖L ≤ 1
}
.

By adding dY neurons in each layer of g, we can mimic the function (g(z, y), y).
Thus

Rfg ⊆ R̃c = R(Lcomp,pcomp, scomp,∞),

where

Lcomp = Lf + Lg + 1,

pcomp = (dz + dY , pg,1 + dY , . . . , pg,Lg + dY , d+ dY , pf,1, . . . , pf,Lf , 1),

scomp := sg + sf + (Lg + 1)dY .

As long as sg ≥ dY Lg, pg,i ≥ dY (i = 1, ..., Lg), there exists a universal constant
c > 0 such that

γ(Lcomp,pcomp, scomp) ≤ c · γ(Lf ∨ Lg,pf ∨ pg, sf ∨ sg),

where x∨y for vectors x, y is meant component-wise. These remarks lead to the
following result.

Lemma B.9 (Upper bound on the estimation error). Suppose that there exist
constants κ > 1, α > 1 such that for all k ∈ N, βX,Y (k) ≤ κ · k−α. Suppose that
sg ≥ dY Lg, pg,i ≥ dY (i = 1, ..., Lg) and γ(Lg ∨Lf ,pg ∨pf , sg ∨ sf ) ≤ n. Then
there exists some constant C > 0 only depending on characteristics of (X1, Y1)
and F, κ, α such that

EEcn ≤ C ·
[(γ(Lf ,pf , sf )

n

)1/2
+
(γ(Lg ∨ Lf ,pg ∨ pf , sg ∨ sf )

n

)1/2]
.

Furthermore, with probability at least 1− 4n−1 − 2( log(n)
n )

α−1
2 ,

En ≤ C·
[(γ(Lf ,pf , sf )

n

)1/2
+
(γ(Lg ∨ Lf ,pg ∨ pf , sg ∨ sf )

n

)1/2
+
( log(n)

n

)1/2]
.

Proof of Theorem 4.3. In order to bound the estimation error Ecn proceed as in
the proof of Theorem 3.4. By Proposition B.7,

Rcn(ĝcn) ≤
√
d ·Acn + 2 · Ecn.

Under the given assumptions on Lf ,pf , sf , we conclude from (B.9) that

γ(Lf ,pf , sf )

≤ (sf + 1) log
(
22Lf+6(Lf + 1)p20p

2
L+1s

2Lf
f

)
. sfLf log(sfLf ).

Under the given assumptions on Lg,pg, sg, we conclude by Lemma B.8 for
N large enough that

An .
N

n
+N−β/dg .
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Thus by Lemma B.9,

ERcn(ĝcn) .
(sfLf log(sfLf )

n

)1/2
+N−β/dg

+
( (sf ∨ sg)(Lf ∨ Lg) log((sf ∨ sg)(Lf ∨ Lg))

n

)1/2
.

Choose N = dC1nφne, where C1 is large enough such that the conditions of
Lemma B.8 are met. Then

ERcn(ĝcn) .
(sfLf log(sfLf )

n

)1/2
+ φ1/2n log(n)3/2.

Appendix C: Entropy bound and large deviation bounds for
absolutely regular sequences

C.1. Entropy bounds

In this section, we develop the entropy bound under absolutely regular β-mixing
for deep sparse regularized ReLU networks R = R(L,p, s, F ) in dependence on
L,p and s. The basic theoretical ingredients consist of the empirical process
theory invented in [12] and [10]. Recall the introduction of bracketing numbers
and mixing coefficients from Section B.2.

Lemma C.1. Let F ⊂ {f : Rr → R measurable} be any class of functions such
that supf∈F ‖f‖∞ ≤ F . Let

H := 1 ∨ logN[](2BF,F , ‖ · ‖∞).

Suppose that there exist constants κ > 1, α > 1 such that for all k ∈ N, βX(k) ≤
κ · k−α and H ≤ n.

Then there exist constants K1,K2 > 0 only depending on characteristics of
(Xi)i∈Z such that

E∗ sup
f∈F
|(P̂Xn − PX)f |

≤ K1 · n−1/2 · J[](F,F , ‖ · ‖∞) +K2 F ·
(H
n

) α
α+1

=: rn, (C.1)

where E∗ denotes the outer expectation.

Proof. Let δ > 0 arbitrary. From [10] (Remark 3.7 and the procedure in section
4.3 therein) yield that for any class F with supf∈F ‖f‖2,β ≤ δ, supf∈F ‖f‖∞ ≤
F , we have with some constant K ′ > 0 only depending on characteristics of
(Xi)i∈Z that

E∗ sup
f∈F
|(P̂Xn − PX)f | ≤ K ′ · n−1/2 · J[](δ,F , ‖ · ‖2,β) + 2F12F>M(n,δ) + 2R(n, δ),

(C.2)
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where with q∗(x) := min{q ∈ N : βX(q) ≤ qx} and some universal constant
c > 0,

R(n, δ) := 2cF
H(δ) · q∗

(
H
n

)
n

,

M(n, δ) :=
16B1/2δ

q∗(H(δ)/n)

√
n

H(δ)
,

H(δ) := 1 ∨ logN[](2B
1/2δ,F , ‖ · ‖2,β).

By (B.8), choosing δ = B1/2 · F yields H(δ) ≤ H and J[](δ,F , ‖ · ‖2,β) ≤
B1/2J[](F,F , ‖ · ‖∞).

For x ≤ 1, we have

q∗(x) = min{q ∈ N : β(q) ≤ qx} ≤ min{q ∈ N : κq−α ≤ qx}

= min{q ∈ N : κx−1 ≤ qα+1} = dκ
1

α+1x−
1

α+1 e

≤ 2κ
1

α+1x−
1

α+1 . (C.3)

Due to H ≤ n, this implies

R(n, δ) ≤ 2cF · H
n
· q∗
(H
n

)
≤ 4cFκ

1
α+1

(H
n

) α
α+1

. (C.4)

In the same way we get that

M(n, δ) = 16BF
[√H

n
· q∗
(H
n

)]−1
≥ 8BFδκ−

1
α+1

(H
n

) 1
α+1−

1
2

.

For any p > 0, we have

2F12F>M(n,δ) ≤ (2F )1+pM(n, δ)−p ≤ (2F )1+p · (8BF )−pκ
p

α+1

(H
n

)− p(α−1)
2(α+1)

.

Choosing p = 2α
α−1 yields

2F12F>M(n,δ) ≤ (2F )1+p · (8BF )−pκ
p

α+1

(H
n

)− α
α+1

. (C.5)

Insertion of (C.4) and (C.5) into (C.2) yields the result.

C.2. Large deviation bounds

The essential techniques we use to derive large deviations bounds under abso-
lutely regular β-mixing are coupling (cf. [5, 10]), a Talagrand-type concentration
inequality by [18] and a covariance bound by Rio [27]. For completeness, we cite
the results our derivations are based on.
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Lemma C.2 (Coupling lemma, [10]). Let X and Y be two random variables
taking values in the Borel spaces X1 and X2 respectively, and let U be a random
variable with uniform distribution on [0, 1], independent of (X,Y ). There exists
a random variable Y ∗ = h(X,Y, U), where h is a measurable function from
X1 ×X2 × [0, 1] into X2, such that:

(i) Y ∗ is independent of X and has the same distribution as Y .
(ii) P(Y 6= Y ∗) = β(σ(X), σ(Y )).

Theorem C.3 (Talagrand-type concentration inequality, [18], Theorem 1.1).
Assume the Wi, i ∈ N are independent random variables with values in Rr. Let
F ⊂ {f : Rr → R meausurable} be a countable set of functions with Ef(W1) =
0, supf∈F ‖f(W1)‖22 <∞ and supf∈F ‖f‖∞ ≤ 1. Define

Z = sup
f∈F

∣∣∣ m∑
i=1

f(Wi)
∣∣∣.

Let σ be a positive real number such that σ2 ≥ supf∈F Var‖f(W1)‖22. Then for
all x > 0, it holds that

P
(
Z ≥ EZ +

(
2x(mσ2 + 2EZ)

)1/2
+
x

3

)
≤ exp(−x).

The following lemma is a direct consequence of Corollary 1.4 and Remark 1.6
in [27].

Lemma C.4 (Variance bound for β-mixing sequences). Let (Xi)i∈N be a strictly
stationary sequence of random variables with values in a Polish space X . Let
q ∈ N. Then for any f : X → R with ‖f‖2,β <∞,

∥∥∥ q∑
i=1

f(Xi)
∥∥∥2
2
≤ 4q‖f‖22,β .

Lemma C.5. Let F ⊂ {f : Rr → R measurable} be any countable class of
functions such that Ef(Xi) = 0 for all f ∈ F and supf∈F ‖f‖∞ ≤ F .

Suppose that there exist constants κ > 1, α > 1 such that for all k ∈ N,
βX(k) ≤ κ · k−α. Define rn as in (C.1).

Then for all x > 0 and q ∈ N,

P
(

sup
f∈F

∣∣∣ n∑
i=1

f(Xi)
∣∣∣ ≥ 4nrn + 8B1/2Fn1/2x1/2 + 4Fqx

)
≤ 2 exp(−x) +

nβX(q)

qx
.

(C.6)
Especially, for any z ≤ 1,

P
(

sup
f∈F

∣∣∣ n∑
i=1

f(Xi)
∣∣∣ ≥ 4nrn+8B1/2Fn1/2x1/2+8Fκ

1
α+1 z−

1
α+1x

)
≤ 2 exp(−x)+

nz

x
.

(C.7)
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Proof of Lemma C.5. Let q ∈ N. Starting from Lemma C.2 we construct by
induction a sequence of random variables (X0

i )i>0 such that:

1. For any i ≥ 0, the random variable U0
i := (X0

iq+1, . . . , X
0
iq+q) has the same

distribution as Ui := (Xiq+1, . . . , Xiq+q).
2. The sequence (U0

2i)i≥0 is i.i.d. and so is (U0
2i+1)i≥0.

3. For any i ≥ 0, P(Ui 6= U0
i ) ≤ β(q).

Define Wi(f) :=
∑iq∧n
j=(i−1)q+1 f(X0

i ). From the above coupling we obtain the
following decomposition:

n∑
i=1

f(Xi) =

dnq e∑
i=1,i odd

Wi(f) +

dnq e∑
i=1,i even

Wi(f) +

n∑
i=1

{
f(Xi)− f(X0

i )
}
.

We conclude that

sup
f∈F

∣∣∣ n∑
i=1

f(Xi)
∣∣∣ ≤ Fq · (Z1 + Z2) +A, (C.8)

where

Z1 := sup
f∈F

∣∣∣ dnq e∑
i=1,i odd

Wi(f)

Fq

∣∣∣, Z2 := sup
f∈F

∣∣∣ dnq e∑
i=1,i even

Wi(f)

Fq

∣∣∣, A := F

n∑
i=1

1Xi 6=X0
i
.

Note that W2k(f), W2k+1(f), k ≥ 0 are independent by construction. Further-

more, supf∈F |
Yi(f)
Fq | ≤ 1 and by Lemma C.4 and (B.8),

‖Wi(f)‖22 ≤ 4q‖f‖22,β ≤ 4qB‖f‖2∞ ≤ 4qBF 2

and thus ‖Wi(f)
Fq ‖

2
2 ≤ 4B

q . By Theorem C.3 applied with σ2 = 4B
q , we have

P
(
Z1 ≥ EZ1 + (2x(

4Bn

q2
+ 2EZ1))1/2 +

x

3

)
≤ exp(−x).

Using the simple bound 2ab ≤ a2 + b2, we have

(2x(
4Bn

q2
+ 2EZ1))1/2 ≤ (8Bxn)1/2

q
+ 2(xEZ1)1/2 ≤ (8Bxn)1/2

q
+ x+ EZ1.

This yields

P
(
Z1 ≥ 2EZ1 + (

8Bxn

q2
)1/2 +

4x

3

)
≤ exp(−x). (C.9)

Let I1 :=
⋃dnq e
i=1,i odd{(i−1)q+1, ..., iq∧n}. Then Z1 = 1

Fq supf∈F
∣∣∑

i∈I1 f(X0
i )
∣∣.

Note that by construction, X0
i is still β-mixing with coefficients upper bounded

by βX , and I1 has less than or equal n summands. It is therefore easily seen
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that the upper bounds in [10] which were used in the proof of Lemma C.1 stay
the same. We obtain from (C.1) that

Fq · EZ1 ≤ nrn. (C.10)

Similar results as given in (C.9) and (C.10) also hold for Z2.
Finally, we have by Markov’s inequality that

P(A > x) ≤ ‖A‖1
x
≤ nFP(Xi 6= X0

i )

x
≤ nFβX(q)

x
. (C.11)

Insertion of (C.9), (C.10) and (C.11) into (C.8) yields

P
(

sup
f∈F

∣∣∣ n∑
i=1

f(Xi)
∣∣∣ ≥ 2 ·

(
2nrn + (8BF 2nx)1/2 +

4Fqx

3

)
+ Fqx

)
≤ P(Z1 ≥ 2EZ1 + (

8Bxn

q2
)1/2 +

4x

3
) + P(Z2 ≥ 2EZ2 + (

8Bxn

q2
)1/2 +

4x

3
)

+P(A ≥ Fqx)

≤ 2 exp(−x) +
nβX(q)

qx
,

which concludes the proof of (C.6). (C.7) follows from the upper bound in (C.3)
and the choice q = q∗(z).
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