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Abstract

Out-of-sample tests are widely used for evaluating and selecting between models’ forecasts

in economics and finance. Although widely used, underlying these tests is often the assump-

tion of constant relative performance between competing models which is invalid for many

practical applications. We propose a new two-step methodology designed specifically for fore-

cast evaluation and selection in a world of changing relative performance. In the first step we

estimate the time-varying mean and variance of the series for forecast loss differences, and in

the second step we use these estimates to compare and rank models in a changing world. We

show that our tests have high power against a variety of fixed and local alternatives.

Keywords: forecasting, unstable environments, locally stationary processes

J.E.L Codes: C22, C52, C53

1 Introduction

In a field such as economics where the majority of data available is non-experimental, an important

way to judge competing models is by comparing their forecasting performance. Out-of-sample

forecast evaluation tests, which are broadly variations of the Diebold-Mariano test from their 1995
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seminal paper, are currently the benchmark for comparing models’ forecasting performance. It is

known however that in an environment where relative performance between models can change

over time, these tests can generate spurious and potentially misleading results. An example of

this is the well-known problem of choosing a sample splitting point. The splitting point is used in

Diebold-Mariano-type tests to split the sample into the first part, data used for estimation, versus

the second part, data used for evaluation. The commonly adopted approach advocates a late sam-

ple splitting point which leaves relatively little data for evaluation and consequently leads to these

tests having low power.1 Simultaneously, there is the opportunity for practitioners to search for a

favorable splitting point that supports their desired outcome, see e.g. Rossi and Inoue (2012) and

Hansen and Timmermann (2012). These issues become more troublesome in a world of chang-

ing relative performance. In such a setting, one model may outperform its competition for some

window of data, but under-perform for a different window. As the splitting point controls the divi-

sion of the data into estimation and evaluation, the choice of the splitting point controls implicitly

the window of evaluation, and manipulating the splitting point can allow one to influence the

outcome of the test.2

To present an example that demonstrates both the potential issue of low power and the arbi-

trary dependence of the test conclusion on the splitting point, consider the following real-world

example. We forecast the daily variance of IBM returns spanning 2006-2017 using two models:

GARCH(1,1) model with Standard normal errors and GARCH(1,1) model with Student-t errors.

Variance forecasts are produced via a standard recursive scheme, 5 minute realized variance cal-

culated from the data is used as a proxy for the “true” variance, and mean squared errors are

calculated by averaging squared errors after a particular splitting point. We present the difference

in the mean squared errors, ∆MSEt, and the associated critical values3 at 5% significance level

across a range of splitting point choices. The out-of-sample data starts in December 2010, leaving

at most 1500 data points for evaluation. Each slice of the graph therefore represents the result of

a Diebold-Mariano test at that particular splitting point. In this example, for many splitting point

choices the test is not powerful enough to distinguish between the two models. For other choices

of the splitting point we obtain a rejection in one direction, and for yet other choices we obtain a

rejection in the opposite direction. Hence, depending on the choice of splitting point all possible

conclusions of the test are possible.

1See Diebold (2015) for a discussion on this issue and a more recent study by Hirano and Wright (2017) that con-
cludes that current out-of-sample tests perform poorly due to large estimation errors.

2Despite these drawbacks, out-of-sample tests are still often preferred to their alternative, in-sample tests, which
uses all available data for both estimation and evaluation. See Hansen (2010) for an analysis the tendency for in-sample
tests to select models that overfit and underperform in forecasting.

3We use HAC variance estimator for the calculation of the test statistic.
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Figure 1: The figure displays the difference in MSE calculated for GARCH(1,1)-N and GARCH(1,1)-St-t for
IBM data, 2006-2017 using recursive forecasting scheme. The MSE for each of the models is taken with
respect to 5min RV calculated from the data. For a given splitting point, the red line represents the value of
the Diebold-Mariano test, while the blue lines represent the associated critical values at α = 0.05 significance
level.

Our previous example demonstrates the potential perils of using tests designed for a world of

constant relative performance when we are in a changing world. Giacomini and Rossi (2010) were

the first to systematically study the issue of changing relative performance in the context of out-

of-sample forecasting. They propose two tests in this unstable environment, the first being a “one-

time reversal test” which considers a null of equal performance against a joint alternative that one

of the two models was always better or that there was a one-time reversal, i.e. single permanent

reversal in the relative performance of the models. They also propose a “fluctuation test” of which

the null is equal relative performance between two models at all points in time. This latter test is

in contrast to the first test, and more broadly the literature on structural breaks, as they instead

allow for smoothly changing relative performance where models can overtake each other many

times. This smooth type of instability presents its own challenges, for instance one is required to

compose an estimate for the local relative forecasting performance between models. The above two

tests can detect a wide range of instabilities in relative performance. This of course poses a natural

question of what a practitioner should do once instabilities are detected. The authors state in their

article that they “do not investigate this issue in depth, although possible strategies can be devised

if one is willing to specify the nature of the instability". Importantly, if one detects instabilities, the

notions of forecast evaluation and forecast selection do not overlap as past performance may not

indicate future performance, however it is nonetheless important that practitioners have guidance
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on how to evaluate and select models in such cases.

Regarding the topic of forecast selection, in the context of conditional predictive ability Gi-

acomini and White (2006) offer a heuristic approach for forecast selection by using their model

to forecast the conditional mean of forecast loss differences and comparing it with a user-specified

threshold. They apply this procedure to select the best method among several parameter-reduction

methods in the context of forecasting macroeconomic indicators. The authors acknowledge that

their method is not formally developed since forecast selection is not a primary focus of their pa-

per and further emphasize that “the subject of forecast selection is a significant topic that deserves

extensive attention...".

In this paper, we develop new forecast evaluation and selection methodology for a world of

smoothly changing relative performance. Our forecast evaluation test compares the average his-

torical performance of models to test for overall equal predictive ability. This is in contrast to

the fluctuation test null in Giacomini and Rossi (2010) of equal predictive ability at all points in

time. Comparing with existing out-of-sample tests, our metric for overall equal predictive abil-

ity is specifically designed for a world of changing relative performance, and we incorporate the

whole sample of forecast losses hence we do not anchor our test on a particular sample splitting

point. For the purpose of forecast selection, we rank models based on which model we expect to

outperform in the next period. We do this by constructing forecasted probabilities of how likely

the forecast loss of one model will be smaller than the forecast loss of another model, which a

practitioner may use to select a model for forecasting next period.

Our overall methodology is summarized by a two-step procedure. In the first step, we non-

parametrically estimate the time-varying mean and variance for the series of forecast loss differ-

ences. In the second step, we utilize these estimates to compare and rank competing models using

our two proposed approaches. For the first approach, we define a test statistic which aggregates the

time-varying normalized losses across the entire sample. One therefore can interpret the new test

as an aggregated t-test across the whole sample, which is reminiscent to the weighted least squares

idea in the standard regression framework. In the second approach, we estimate the probability of

how likely one model will outperform the other. In addition, we construct forecast intervals, which

measure the confidence interval of the forecasted probability. In general, our two approaches can

coincide in their conclusions, and they overlap in the special case of constant relative performance.

However in some applications model A that performed on average equal to model B over the over-

all sample may outperform towards the end of the sample. In such a situation, our first approach

will indicate historical equal predictive ability, however our second approach will propose to se-

lect model A for future forecasts. The second approach is more relevant for the purpose of ranking
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models for future forecasts, but because it is only concerned with the next period performance the

resulting ranking is noisier and contingent always on the end point of a particular sample. On

the other hand, a practitioner may be interested in which model provided a better explanation to

the data, from the point of view of out-of-sample performance, and here our first approach will

be more appropriate to address the question. We believe both approaches are insightful for differ-

ent situations and we leave it to the practitioner to select the appropriate methodology for their

application.

Related to this work is topic studied more broadly by Giacomini and White (2006), who develop

a conditional version of the unconditional equal predictive ability test of Diebold and Mariano

(1995). Acknowledging the possible dependence of relative performance on the information set at

a given point in time, Giacomini and White (2006) condition their test on a set of covariates. This

therefore enables one to use their test to detect the possible variation of relative performance over

time. For example, their test rejects their null when models’ relative performance depends on a

“state of the world” variable, even if the unconditional relative performance is equal. In this case

the dependence on the state of the world variable leads to variation in relative performance over

time, and we may use their test as a check for whether we are in a changing world or a constant

world, where a rejection of their test is indicative of changing relative performance.

In addition there are the papers by Rossi and Inoue (2012) and Hansen and Timmermann

(2012). They look to tackle the splitting point problem in a constant relative performance context

by accounting for the potential for data mining of practitioners who search for favorable splitting

points. They propose to explicitly mine over all splitting points for the one that is the most favor-

able for the alternative hypothesis, and they reevaluate their test statistic at this splitting point with

adjusted critical values that account for the bias introduced by mining.

The rest of the paper is organized as follows. In section 2 we further discuss the world of

changing relative performance and the two approaches we propose. In section 3 we present our

theoretical results. Section 4 addresses the issue of bandwidth selection for our two-step non-

parametric procedure. Section 5 describes the bootstrap procedure that is used to approximate

the distribution of our new statistics in applications. In section 6 we investigate the size and the

power of our test under a variety of alternatives as well as the performance of the sign forecasts.

We present our applications in section 7 and conclude in section 8. All proofs of the theoretical

results are collected in Appendix B in the Supplementary Material.

Throughout this paper, the following notation is used. Let f : Rd → R, then ∂x f := ∂ f
∂x and

∂2
x f := ∂2 f

∂x∂x′ denote the first and the second derivatives with respect to the argument x respectively.

For some vector v ∈ Rd we write v′ to denote the transpose of v and define |v|2 := (∑d
j=1 v2

j )
1/2 and
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|v|∞ := maxj=1,...,d |vj|. For some matrix A ∈ Rd×d we write tr(A) to denote its trace and define

|A|∞ := maxi,j |Aij|. In addition, ⊗ denotes the Kronecker product of matrices. Finally,
p−→ denotes

the convergence in probability and d−→ denotes convergence in distribution. All convergences are

considered when the sample size T → ∞.

2 Forecast evaluation and selection in unstable environments

This discussion is structured in the context of point forecasts, although the methodology is more

general and can be applied in the context of probability or density forecasts. Let A, B be two

models and {yt}T
t=1 be the original data. Let ŷA

t+k|t and ŷB
t+k|t denote the forecasts made at time

t for yt+k using models A and B respectively, which reflect the models as well as the estimation

procedures. We denote the difference in forecast losses at time t + k by ∆LAB
t+k = L

(
yt+k, ŷA

t+k|t

)
−

L
(

yt+k, ŷB
t+k|t

)
, where L (·) denotes the loss function chosen by the practitioner. In what follows

we shall refer to ∆LAB
t+k as ∆Lt+k for simplicity of notation. We take forecasts as given and therefore

in what follows treat loss differences as primitives.

We consider a world of changing relative performance, hence we also allow the mean and

variance of ∆Lt+k to be time-varying. In particular, we define µt+k = E [∆Lt+k|Xt], where Xt

denotes a set of conditioning regressors. This therefore makes µt+k a conditional mean of the

loss difference at time t + k. Since our test is a weighted average of µt+k it makes it therefore a

conditional test, albeit in a different sense than in Giacomini and White (2006). Specifically, for

our methodology we consider Xt to be lags of ∆Lt. In general, our theory can be extended to

allow for general Xt so long as its functional dependence (see Wu (2005)) decays geometrically fast

with further modification to the proofs. We discuss our motivation to choose lags of ∆Lt as our

conditioning variable in the next section when we introduce our model.

In a world of constant relative forecasting performance, i.e. µt+k = µ, for all Xt and all t ∈
{1, · · · , T}, the tasks of evaluating versus selecting models overlap. Supposing that we knew µ

with certainty, if µ = 0 we say the models have equal predictive ability, and if µ < 0 model A

performs better than model B both in the past and in the future. Here, evaluating which model

performed better in the past informs directly which model shall perform better in the future and

the tasks of evaluation and selection are therefore the same. Furthermore, in such a world the

conclusion of the standard out-of-sample tests does not depend on the evaluation window and

neither on the choice of the splitting point, although with a too short evaluation window the test

shall suffer from low power. Studies that assume constant relative performance include Diebold

and Mariano (1995), West (1996), White (2000),McCracken (2000), Clark and McCracken (2001),
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Clark and McCracken (2005), Inoue and Kilian (2005), Hansen (2005), Corradi and Swanson (2007),

Hansen et al. (2011), Rossi and Inoue (2012), Hansen and Timmermann (2012) and Li and Patton

(2018), among others.

In an unstable environment4, the tasks of forecast evaluation and selection no longer overlap,

and a model that performed better in the past may not perform better in the future. Simultane-

ously, it is often not the case that one model will dominate another model across all points in time,

hence it is not immediately obvious how one should compare historical performance between

models whose relative forecasting performance might have switched signs more than once over a

historical sample. To address these questions we require approaches specifically designed for such

unstable environments.

Giacomini and Rossi (2010) propose the fluctuation test to investigate whether models’ relative

forecasting performance has been stable over time by using a measure of local relative performance.

In particular, they propose to measure local relative performance between two models by calcu-

lating the mean of loss differences over rolling windows of (fixed) size m and then testing the null

hypothesis that this local measure is equal to zero at all points in time. In designing their test

this way, they allow for time-variation in the mean relative performance between models. A rejec-

tion of their fluctuation test is then indicative of either changing relative performance, or non-zero

constant relative performance.

In addition, Giacomini and White (2006) consider testing the following conditional moment

condition: E [∆Lt+1|Ft] = 0, where Ft is the information set available to forecaster at time t.

Provided that {∆Lt,Ft} is a martingale difference sequence, we may test the more lenient in-

sample moment condition5: H0 : E [∆Lt+1ht] = 0, such that ht ∈ Ft. The authors recommend

to set ht = (1, ∆Lt)
′. With such a specification, in a regression framework this translates to the

following:

∆Lt = α + β∆Lt−1 + εt, and H0 : α = 0 ∩ β = 0.

That is to say, their test evaluates the null of the forecast losses having zero mean and an absence of

serial correlation at first lag. If we reject their null, this could be due to a dependence of the above

moment condition on the first lag, or due to constant relative performance but with µt = µ 6= 0 for

all t. Specifically, serial correlation at the first lag is indicative of changing relative performance, as

it is no longer the case that µt = µ for all t.

The purpose of this paper is to provide a methodology for forecast evaluation and forecast selec-

tion designed specifically for unstable environments. To address forecast evaluation, we compare

4This can occur even when the data generating process is stationary, see an example presented in Appendix A1.
5Meaning that rejection of the null H0 : E [∆Lt+1ht] = 0 leads to rejection of H0 : E [∆Lt+1|Ft] = 0.
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past performance and test for overall equal predictive ability over the whole sample. Specifically

our notion of overall equal predictive ability does not require one model to always outperform

another. Instead we incorporate historical relative performance between models into a summary

metric that looks to answer the question of which model did better overall in the given sample. Our

first innovation is to use nearly the entire series of forecast losses to construct our statistic, which

extends the evaluation window to nearly the whole sample. By using the near-whole sample we

eliminate the choice of the splitting point. Furthermore, by using more data we dramatically im-

prove the power of our tests. However, to do this one needs to account for the variance of the

loss differences, as the losses constructed earlier in the sample are likely more noisy than those

constructed at the end due to decreasing estimation error. We therefore propose to calculate the

average overall forecasting performance as follows:

T−k

∑
t=1

wt+kµt+k, (1)

where wt+k are weights that we select to be inversely proportional to the standard deviation of

forecast losses. With our weighting, the forecast losses at the beginning of the sample, which

usually tend to come with the largest estimation error, will be naturally down weighted. Moving

towards the end of the sample, losses tend to naturally receive a larger weight. In what follows,

the time-varying standard deviation of loss differences is nonparametrically estimated from the

data and therefore the corresponding weights are data-driven.

With regards to forecast selection in the context of unstable environments, we propose to di-

rectly forecast the probability that one model shall outperform in the next immediate period, i.e.

the probability that the sign of the next period loss difference is negative. We choose to forecast

the sign as opposed to the level because levels can depend on arbitrary factors such as a factor

of scaling to the loss function, and furthermore it is not clear what kind of a difference in levels

constitutes a significant deviation (see Giacomini and White (2006) for a simple application of their

framework to level forecasting). Meanwhile, the sign of the loss difference reflects a binary com-

parison, and the sign for a particular comparison is stable across all symmetric loss functions. In

addition to forecasting the probability of outperforming, we also construct what we call forecast

intervals which measure the (1− α)% confidence interval of the forecasted probability, where α is

a chosen significance level. Specifically, we predict a model to strictly out-perform another when

the forecasted probability is greater than 0.5 and the forecast interval does not contain 0.5. Impor-

tantly, we select models by forecasting truly out of the sample, which is in contrast to comparing

past performance using pseudo out-of-sample methods in the existing literature.

8



We construct losses following the standard recursive scheme, however in contrast to the ex-

isting out-of-sample tests, we need to construct losses for nearly the entire sample and not just a

short evaluation window towards the end of sample. We describe our loss construction below.

t = 1 t = Tt = T t = T + 1 t = T + 2

ε̂T+k ε̂(T+1)+k ε̂(T+2)+k

Estimation sample #1

Estimation sample #2

Estimation sample #3

Figure 2: Construction of the time series of the forecast errors for a single model.

The pseudo-out-of-sample forecast made at time t for period t + k is compared with the real-

ized value in period t + k, which when differenced gives the forecast error of period t. The loss

function is then applied to this error which gives the forecast loss of period t + k. The recursive

scheme calculates the forecast loss using parameter estimates based on all data up until time t. It is

recursive because with each new period the model is re-estimated to include the new data. We use

all of the forecast losses except for a small sample of length T in the beginning, which is reserved

for initial estimation. We recommend that practitioner always sets T = 100.

Remark 1. The only recommendation for T is that it should be in the beginning of the sample.

In our simulations and applications we experimented with T = 150 and T = 200 vs our proposed

T = 100 and the conclusions of our tests did not differ. Indeed, since the estimates at the beginning

of the sample tend to come with a larger estimation error, they will tend to be downweighted. It is

therefore intuitive that our tests are not sensitive to this choice.

After the time series of forecast losses is constructed for each model, we may now compute the

loss differences for a pair of models, A and B:

∆Lt+k = L
(

yt+k, ŷA
t+k|t

)
−L

(
yt+k, ŷB

t+k|t

)
,

where L(·) is the chosen (by the researcher) loss function. For example, for the conventional

squared error loss function it simply becomes

∆Lt+k =
(

ε̂A
t+k

)2
−
(

ε̂B
t+k

)2
, where ε̂i

t+k = yt+k − ŷt+k|t, i = A, B.

In addition, due to our use of a recursive estimation scheme, our methodology is not applica-
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ble to nested models. This happens because the estimation error of parameters is asymptotically

vanishing, and therefore whenever two models are nested their forecasts become asymptotically

equivalent. This leads to the asymptotic variance-covariance matrix of the vector of their respec-

tive losses to become degenerate and lose full rank.

3 Theoretical results

We now present the key theoretical results for this paper. The code required for the implementation

is available here. Having constructed the time series for ∆Lt, we now work with this time series

and not the original data. For ease of notation we shall say that ∆Lt ranges from t = 1, 2, · · · , T,

although the length of this series T is different to the length of the original data yt. The new T is

equal to the original T − T − k + 1.

We propose to model ∆Lt as a locally stationary AR(d) process with white noise errors which

allows its mean and variance to change smoothly over time. The rationale behind such a modelling

framework is as follows. It is a well-established fact that estimation error causes Lt to exhibit se-

rial correlation, see e.g. Bollerslev et al. (2016). One way to account for serial correlation in ∆Lt

is to allow it to depend on its own lags, and an AR(d) structure on ∆Lt is a simple yet tractable

model that achieves that goal. In particular, it is well-known that any correlated stationary pro-

cesses can be approximated by white-noise AR or ARMA models, see e.g. Pourahmadi (1992) and

Brockwell and Davis (2006). Since locally stationary processes behave approximately stationary

over short periods of time (i.e. locally in time) the above argument straightforwardly extends to

locally stationary AR processes with white noise errors. In this paper we develop the theory for

general time-varying AR(d) processes and briefly discuss how the lag selection of d can be per-

formed in such a framework. That said, we believe that the simple AR(1) model is often sufficient

for practitioners to capture features of the data while remaining practically simple to implement.

As in the literature on locally stationary processes, we make ∆Lt depend on the rescaled time

points t/T rather than real time t, forming therefore a triangular array, {∆Lt,T : t = 1, · · · , T}. This

rescaling is necessary to justify the properties of the resulting estimation procedures with so-called

infill asymptotics. The model on ∆Lt,T then reads:

∆Lt,T = ρ0
t,T +

d

∑
j=1

ρ
j
t,T∆Lt−j,T + ξt,T, t = 1, · · · , T, (2)

where ξt has zero mean and is independent of ∆Ls,T for s ≤ t− 1. For mathematical reasons, we

assume that the recursion (2) is also valid for the unobserved time points t < 0 and t > T. We
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further take the time-varying functions ρ
j
t,T, j = 0, · · · , d to be deterministic functions of time. We

use the following rescaling method. Let ρj(·) be a function on [0, 1] and let for t = 1, · · · , T

ρ
j
t,T = ρj (t/T) , j = 0, 1, · · · , d.

The notation ρ
j
t,T indicates that ρ

j
t,T depends on the sample size T and the domain of ρj(·) becomes

more dense in t/T as T → ∞. In other words, the time-varying coefficient functions ρj(·) do not

depend on the real time t but rather on the rescaled time points t/T. For simplicity, we impose a

deterministic structure on ρt,T and σt,T since we are primarily interested in capturing time variation

in the mean and variance of ∆Lt. In addition, since the coefficients of the autoregression in (2)

are time-varying, ∆Lt,T is no longer stationary, but locally stationary in the sense of Dahlhaus

et al. (2019). In addition, we assume that the error process {ξt,T, t = 1, · · · , T} has the following

structure:

ξt,T = σ(t/T)εt, (3)

where εt is an i.i.d. process having the property that εt is independent of ∆Ls,T for s ≤ t− 1.

Remark 2. Note that our model is for forecast loss differences as a whole, which allows for

serial correlation in forecast errors due to, for example, estimation error. The error term εt cor-

responds to the innovation to the relative forecasting performance at time t, which we model as

white noise based on our rationale from before. Nonetheless, the theory developed in this paper

can be extended to non-i.i.d. error εt. In fact, it is not hard to see in the proofs that we can allow

for errors of the form:

εt = G(ηt, ηt−1, ...),

where G(·) is a well-defined function, ηt is i.i.d. and εt has mean 0 and is an uncorrelated sequence.

Furthermore, one has to impose a condition that both the β-mixing coefficients (Doukhan et al.

(1995)) and the functional dependence measure (Wu (2005)) decay geometrically fast. In principle,

it is also possible to extend the theory to polynomially decaying dependence coefficients but then

some additional proofs are required.

For the ease of exposition we compactly write the model in (2) as follows:

∆Lt,T = X′t,Tρ (t/T) + σ (t/T) εt, (4)

where ρ(t/T) = (ρ0(t/T), ρ1(t/T), · · · , ρd(t/T))′ and Xt,T = (1, ∆Lt−1,T, ∆Lt−2,T, · · · , ∆Lt−d,T)
′.

Finally we assume that ρ(u) = ρ(0) and σ(u) = σ(0) for u ≤ 0, while ρ(u) = ρ(1) and σ(u) = σ(1)

for u ≥ 1. In what follows, we estimate the time-varying coefficient function ρ(t/T) and time-
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varying volatility function σ(t/T) by nonparametric kernel techniques. In particular, using the

notation Kh (·) = K (·/h) /h for the kernel function, we estimate model (4) in the following way:

Step 1: First estimate the mean function via the local linear nonparametric estimator. In particular,

define the following locally weighted least-squares objective:

θ̂ (u) = (ρ̂(u)′, ∂̂uρ(u)′)′ = arg min
θ∈R2(d+1)

T

∑
t=1

Kh1 (t/T − u)
(
∆Lt,T − (Zu

t )
′θ
)2 , (5)

where Zu
t = Zu

t,T = (Xt,T, Xt,T (t/T − u))′. The explicit solution to (5) is given by

θ̂(u) = Σ̂T(u)−1 · 1
T

T

∑
t=1

Kh1(
t
T
− u) ·Zu

t · ∆Lt, Σ̂T(u) :=
1
T

T

∑
t=1

Kh1(
t
T
− u) ·Zu

t (Z
u
t )
′, (6)

Step 2: Define estimated residuals ξ̂t(u) = ∆Lt,T −X′t,T ρ̂(u) which serves as an estimator of ξt as

long as t
T ≈ u. Estimate the conditional variance and its derivative ς(u) = (σ2(u), ∂u(σ2(u)))′

by running a local linear nonparametric regression of ξ̂t,T(u) on the rescaled time t
T . Define

Fu
t := (1, t

T − u)′, and

ς̂(u) := (σ̂2(u), ∂̂uσ2(u))′ = arg min
ς∈(0,∞)×R

1
T

T

∑
t=1

Kh2(t/T − u) · {ξ̂t(u)2 − (Fu
t )
′ς}2. (7)

The explicit solution of (7) is given by

ς̂(u) = κ̂T(u)−1ẑT(u), (8)

where

κ̂T(u) :=
1
T

T

∑
t=1

Kh2(
t
T
− u) ·Fu

t (F
u
t )
′, ẑT(u) :=

1
T

T

∑
t=1

Kh2(
t
T
− u) ·Fu

t ξ̂t(u)2.

Remark 3. In Lemma 10 in Supplementary Material it is shown that σ̂2(u)
p→ σ2(u), which

shows that for Th2 large enough and h2 small enough, σ̂2(u) is positive. However, for finite sam-

ples it may occur in rare cases that σ̂2(u) < 0. This issue can be dealt with as follows: fix some

small σ0 > 0. If σ̂2(u) < σ2
0 , then replace σ̂2(u) by σ2

0 . In practice, one may simply choose σ2
0 as 10−3.

The corresponding estimator of the standard error can then be constructed by talking the

square root of σ̂2(u). In other words, we take σ̂(u) = {σ̂2(u)}1/2. Furthermore, given a band-

12

https://sites.google.com/site/smetaninakatja/Supplementary_material_forecast_evaluation_and_selection.pdf?attredirects=0&d=0


width h, one may further choose the number of lags d based on the Akaike information criterion

as follows: let σ̂2(u)d denote the estimator based on d lags, then choose

d̂ = arg min
d∈N

AIC(d), AIC(d) :=
T

∑
t=1

{
log(σ̂2(

t
T
)d) + 1

}
+ 2(d + 1).

Next, to guarantee formal existence of the theoretical model (2), we impose the following stan-

dard assumptions for time-varying autoregressive processes.

Assumption 1. (i) Let σmin > 0. The functions ρ = (ρ0, ..., ρd) : [0, 1] → Rd+1 and σ : [0, 1] →
[σmin, ∞) are three times continuously differentiable.

(ii) The characteristic polynomial fulfills ϑ(u, z) = 1− ρ1(u)z− · · · − ρd(u)zd 6= 0 for all u ∈ [0, 1]

and all 0 < |z| ≤ 1 + δ for some δ > 0.

Assumption 1 guarantees the existence of a moving average representation ∆Lt,T = ∑∞
j=0 at,T(j)εt−j

of the recursively defined process (2), c.f. Dahlhaus and Polonik (2009) (Proposition 2.4 therein),

where at,T(j) are real numbers satisfying |at,T(j)| ≤ Cρj with some C > 0, ρ ∈ (0, 1). Furthermore,

they allow one to introduce a family of stationary processes ∆Lt(u) which approximate ∆Lt,T in a

suitable way for t
T ≈ u and arise in the limit distributions of our theorems. For each u ∈ (0, 1), the

process ∆Lt(u) follows the recursion:

∆Lt(u) = Xt(u)′ρ(u) + σ(u)εt, t ∈ Z, (9)

where Xt(u) := (1, ∆Lt−1(u), ..., ∆Lt−d(u))′. The process ∆Lt(u) is not observed in practice and is

a theoretical construct which is needed to provide the bias and variance terms in our asymptotic

results. Lastly, we ask the kernel to fulfill the following smoothness assumptions.

Assumption 2. The kernel K : R → R≥0 is nonnegative and Lipschitz continuous, i.e. there exists some

LK > 0 such that for all v1, v2 ∈ R : |K(v1)− K(v2)| ≤ LK|v1 − v2|, with compact support ⊂ [−1, 1].

Furthermore, K is symmetric and fulfills
´

K(z)dz = 1. We set for j ∈ {0, 1, 2}, λj =
´

zjK(z)dz and

νj =
´

zjK2(z)dz.

Conditions on the bandwidths are stated in the main theorems. In general, we ask h1 and h2

to be of the same order, i.e. the ratio h1/h2 is bounded away from 0 and ∞ for T → ∞ and fulfill

hi → 0, Thi → ∞ for i = 1, 2. Since we are using a local linear estimation approach for ρ(·) in (5),

we are able to obtain asymptotic results not only for ρ̂, but also for its derivative ˆ∂uρ. To state this

13



in a concise way, let us define

H =

Id+1 0

0 h1 Id+1

 ,

where Id+1 is the identity matrix of dimension (d+ 1)× (d+ 1). The following theorem is a special

case of Theorem 7 which is proven in the Appendix B in the Supplementary Material.

Theorem 1. Let Assumptions 1, 2 hold. Fix u ∈ (0, 1). Assume that E|ε0|q < ∞ for some q > 2 and

Th5
1 = O(1), Th1 → ∞, h1 → 0. Then

√
Th1

(
H(θ̂(u)− θ(u))− h2

1
2

λ2∂2
uρ(u)

0

) d→ N
(

0, σ2(u)

ν0 0

0 λ−2
2 ν2

⊗Ω(u)−1
)

,

where Ω(u) := E[X0(u)X0(u)′] and Xt(u) is from (9).

Given that our test statistics, which we describe in the next section, aggregates µ̂t(u), i.e. ρ̂(u),

σ̂2(u) over u ∈ [0, 1], it becomes necessary to establish the uniform convergence of ρ̂(u) and σ̂2(u)

over the whole support of u rather than just establishing pointwise consistency. To proceed we

have to impose the following additional Assumption.

Assumption 3. Suppose that for some q > 2, E|ε0|2q < ∞. Furthermore assume that h1 and h2 fulfill

log(T)3

T1− 2
q h1

= o(1),
log(T)
T1/2h1

= o(1) (10)

and

h1/h2 → c ∈ (0, ∞). (11)

Remark 4. While the first condition (10) is needed to provide the correct rate for the uni-

form convergence in Theorem 2, the second condition is needed later in the proof of Theorem

3 to guarantee the neglegibility of several arising terms, especially r2
T,h1

defined in (12). Condi-

tion (11) means that h1, h2 have the same order of magnitude (although they can be different).

By (11), the conditions stated in (10) for h1 automatically also hold for h2. Condition (10) for-

mally imposes lower bound on the rate with which h1 tends to 0. If h1 = cT−α, then (10) asks for

α < min{1/2, 1− 2/q}. As long as q < 4, the second condition in (10) is therefore negligible. Our

statements also hold for the MSE-optimal bandwidth h1 = c · T−1/5 if q > 5/2. In what follows to
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formulate the convergence rates of the estimators we use the following notation:

rT,h =

√
log(T)

Th
. (12)

The next theorem states the uniform convergence rates for θ̂(u) and σ̂2(u).

Theorem 2. Let Assumptions 1, 2, 3 hold. Then

sup
u∈[h1,1−h1]

∣∣H(θ̂(u)− θ(u))− h2
1

λ2∂2
uρ(u)

0

 ∣∣
∞ = op(h2

1) + Op(rT,h1).

and

sup
u∈[h2,1−h2]

∣∣∣σ̂2(u)− σ2(u)− h2
2λ2
{

∂uρ(u)′Ω(u)∂uρ(u) +
1
2

∂2
u(σ

2(u))
}∣∣∣ = op(h2

1) + Op(rT,h1).

Remark 5. In fact, the uniform statements of Theorem 2 are proven for the whole interval, that

is, for u ∈ [0, 1]. However, the bias terms on the boundary become more complicated and therefore

we only state the result for u ∈ [h1, 1− h1] or u ∈ [h2, 1− h2], respectively and the rest of the results

can be found in the Appendix B in the Supplementary Material.

3.1 Test Statistics

Having obtained the estimates of µt and σt we can now form an estimate of our new metric, in-

troduced in (1). In line with the discussion in section 2, we choose the weights wt to be inversely

proportional to the standard error of the estimate of µt. We might want to make it slightly more

general by allowing some extra (given) weighting φt such that wt ∝ φt/σt. An example of φt is

φt = 1 (t ∈ I), where I is a period of interest, e.g. recession times. With this in mind, define s to

be the following quantity:

s :=
ˆ 1

0
φ(u)

EX0(u)′ρ(u)
σ(u)

du,

which represents the deterministic version of the metric introduced in (1). Then the null of equal

predictive ability EPAw and the associated fixed alternative hypotheses can be stated formally as

follows:

H0 : s = 0 vs H1 : s 6= 0, (13)

The notation EPAw explicitly acknowledges that these are rather a class of null hypothesises, de-

pending on the chosen weighting scheme. We then form the test statistic corresponding to the
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above null by replacing s with a good estimator. First define the local t-statistic, which we denote

by τ̂t:

τ̂t =
µ̂t

ŝet
=

X′t,T ρ̂(t/T)
σ̂(t/T)

. (14)

We then propose the corresponding test statistic ST, which we take to be an estimator of s, given

by:

ST =
1
T

T

∑
t=1

φ(t/T)τ̂t =
1
T

T

∑
t=1

φ(t/T)
X′t,T ρ̂(t/T)

σ̂(t/T)
. (15)

Importantly, in what follows in Theorem 3 below we show that ST is indeed a good estimator of

s. Note that the null and associated hypotheses can only be formulated in terms of s which should

be thought of as a theoretical quantity of interest corresponding to the metric in (1). The null can

not be formulated in terms of ST directly (with true ρ(·) and σ(·) functions) since this will result

in random null and alternative hypotheses due to the fact that Xt,T itself is random.

Theorem 3. Let Assumptions 1, 2 and 3 hold with q > 5
2 . Suppose that Th5

1 = O(1). Then it holds that

√
T
(
(ST − s)−B(h1, h2)

)
d→ N(0, V),

where the bias term B(h1, h2) is given by

B(h1, h2) := −1
2

λ2h2
2 ·
ˆ 1

0

φ(u)
2σ3(u)

EX0(u)′ρ(u)∂2
u(σ

2(u))du

+
h2

1
2

λ2

ˆ 1

0

φ(u)
σ(u)

EX0(u)′∂2
uρ(u)du

−λ2h2
2

ˆ 1

0

φ(u)
2σ3(u)

EX0(u)′ρ(u) · ∂uρ(u)′Ω(u)∂uρ(u)du, (16)

and V is defined in (125) in Appendix B.

Remark 6. The bias term B(h1, h2) is of the order h2
1, h2

2. If h1 = T−α, then Assumption 3 and

condition Th1 = O(1) are simultaneously fulfilled for min{ 1
2 , 1− 2/q} > α ≥ 1/5. Specifically, the

MSE-optimal choice h1 = h2 = cT−1/5 for estimating ρ(·), σ2(·) with ρ̂, σ̂2 is always covered.

3.2 Behavior under local alternatives

In addition, to get an idea of the power of the test, we further examine a series of local alternatives,

i.e. alternatives that converge to H0 as the sample size T grows. In particular, we define the
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sequence of functions τt(t/T) given by:

τt(t/T) = τt + cT∆(t/T),

where cT → 0 as T → ∞, the function ∆ is continuous and the quantity T−1
T
∑

t=1
τt satisfies the null

hypothesis H0. Under these local alternatives the process ∆Lt,T is given by

∆Lt,T = X′t,Tρ (t/T) + cT∆ (t/T) σ (t/T) + ξt,T, t = 1, ..., T. (17)

We now show that under (17), we move along the following sequence of local alternatives:

H1,T : s = cT · D, (18)

where

D :=
ˆ 1

0
φ(u)EX0(u)′EX0(u)∆(u)du +

ˆ 1

0
φ(u)∆(u)(1, E(u)′)ρ(u)du, (19)

is a bias term due to the changed mean in the local alternative, where

Γ(u) :=


ρ1(u) ρ2(u) . . . ρd(u)

1 0 . . . 0

0
. . . . . .

...

0 0 1 0

 and E(u) =
(

Id×d − Γ(u)
)−1

(1, 0, ..., 0)′.

The statistic ST under H1,T gets smaller as the sample size increases and therefore the alternatives

H1,T gets closer and closer to H0 as T → ∞. We next examine the behaviour of ST under local al-

ternatives. Theorem 4 below states that the asymptotic power of the test against local alternatives

given in (18) with cT = 1/
√

T is constant for all functions ∆.

Theorem 4. Let the model (17) hold with cT = 1/
√

T. Under the conditions of Theorem 3, we have

√
T
(
(ST − s− cT · D)−B(h1, h2)

)
d→ N(0, V),

where B(h1, h2) is defined in (16), D is defined in (19) and V is defined in (125) in Appendix B.

Theorem 4 shows that in model (17), ST estimates s but it converges to a normal distribution

with mean D.
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3.3 Sign Forecasting

We now present the theory for sign forecasting. Given that our model (2) for ∆Lt has an autore-

gressive structure, we may project which model is likely to forecast better in the next period in the

following way. Let AT := σ(∆Lt,T|t ≤ T) be the sigma-algebra generated by the history of the

process ∆Lt,T. At the final point in the sample T we would like to predict the sign of ∆LT+1, i.e.

we want to know

P (∆LT+1 ≤ 0|AT) = P

(
εT+1 ≤

−X′T+1ρ
( T+1

T

)
σ
( T+1

T

) ∣∣∣AT

)
= Fε

(−X′T+1ρ
( T+1

T

)
σ
( T+1

T

) )
=: PT(XT+1),

(20)

where Fε(x) := P(ε1 ≤ x) denotes the distribution of the i.i.d. errors ε i, i ∈ Z. Furthermore,

let fε denote the density of ε i with respect to the Lebesgue measure. To estimate (20), we use

the approximations ρ((T + 1)/T) ≈ ρ(1) ≈ ρ̂(1) and σ((T + 1)/T) ≈ σ(1) ≈ σ̂(1), where we

formally prove such an approximation is valid as part of Theorem 5. We then estimate Fε by the

corresponding empirical distribution function F̂ε of the estimated residuals ε̂t, that is,

F̂ε(y) :=
1
T

T

∑
t=1

1{ε̂t≤y}, ε̂t :=
∆Lt −X′t,T ρ̂( t

T )

σ̂( t
T )

. (21)

Our final estimator of PT(XT+1) is given by P̂T(XT+1), where

P̂T(x) := F̂ε

(−x′ρ̂(1)
σ̂(1)

)
.

The following definition is only to state the next theoretical result but is not needed for the

corresponding application (see Remark 7 below). For x = (xj)j∈{1,...,d+1} ∈ Rd+1, m ∈ R>0, define

the truncation of x by

x∧m := (max{−m, min{xj, m}})j∈{1,...,d+1},

that is, all entries of x∧m are at most m in absolute value. Therefore for a given sample {∆Lt}T
t=1

the practitioner can calculate the probability of ∆LT+1 of being negative. We state the theoretical

result in Theorem 5 below, which allows the practitioner to calculate the probability as well as the

confidence intervals for this probability, which we call forecast intervals.

Theorem 5. Suppose that Assumptions 1, 2, 3 hold for some q > 5
2 . Suppose that fε is twice continuously

differentiable with supy∈R( fε(y)y2) < ∞, supy∈R |∂y fε(y)y2| < ∞. Let δ ∈ (0, 1) be arbitrarily small,
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and assume that
log(T)
Th3+2δ

= o(1), Th5
1 = o(1). (22)

Then there exists γ > 0 small enough such that

[√
Th1(P̂T(x∧Tγ

)− PT(x∧Tγ
))
]

x∈Rd+1
d→
[
G(x)

]
x∈Rd+1 , (23)

where G(x) is a centered Gaussian process with covariance function

Cov(G(x1), G(x2)) = fε

(
x′1

ρ(1)
σ(1)

)
· fε

(
x′2

ρ(1)
σ(1)

)
· x′1Vzx2,

where Vz is defined in the proof in (137) in Appendix B.

Remark 7. Theorem 5 is applied to P̂T(XT+1) by inserting x = XT+1 into (23) which is possible

due to P(|XT+1|∞ > Tγ) ≤ E|XT+1|∞/Tγ = O(T−γ) = o(1) as T → ∞ and gives the following

approximation in distribution

√
Th1(P̂T(XT+1)− PT(XT+1)) ≈ G(XT+1).

Note that in general, G(XT+1) is not Gaussian distributed. In (23), there is a bias term of order√
Th5

1 present. The exact derivation of this term is tedious and we omit it due to its limited use

in practice. Provided our conditions on the bandwidths, this bias term vanishes asymptotically.

The condition (22) narrows the set of possible bandwidths provided by Assumption 3. Allowable

bandwidths are h1 = cT−α with min{1/3, 1− 2/q} > α > 1/5.

In the simulations, see Figure 7, we see that the sign forecasts perform quite well, forecasting

near the true probability. In particular, the sign forecasts improve as we go later in the sample. Be-

cause the bandwidth for the first estimation step for ρ is quite small in this particular example, this

improvement is not due to estimating ρ more precisely; instead it is due to approximating the c.d.f.

of εt better as we go later in the sample, using more data. In general, it looks as if the difficulty of

approximating the c.d.f. of εt is greater than the issues surrounding estimating ρ imperfectly. Also,

because we are not interested in forecasting the level of the forecast loss difference next period,

but rather its sign, our results are somewhat less sensitive to the imprecision caused by using a

two-sided kernel. In general, if the p.d.f. at the particular ε̂t threshold is small, the probability will

not respond much to inaccuracies in ρ and σ. One way to improve forecasts even further would be

for instance to use the derivative of ρ̂(1).

In practice, we are only concerned about making predictions at the last point in time T, however
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we can nonetheless produce pseudo out-of-sample sign forecasting to assess the quality of our

procedure. In our simulation, we derive the true probabilities explicitly and compare it with our

forecasted probabilities. In addition, in our simulations we use the following criterion to assess the

quality of our forecasts:

Ĉ :=
1

T − T

T

∑
t=T

[
1 (∆Lt+1 ≤ 0)− P̂bc (∆Lt+1 ≤ 0|AT)

]
, (24)

where T = 100 is the first splitting point where we begin our evaluation, and P̂bc (·) denotes the

bias-corrected probability. If the forecasted probabilities were correct, then the criterion above

should on average equal to zero. The bias as well as the forecast intervals can be obtained via

bootstrap which we discuss in detail in section 5.

4 Bandwidth selection

In this section we briefly describe how we choose bandwidths h1 and h2. We start with the selection

of the first stage estimation bandwidth h1. The conventional way to choose the optimal bandwidth

is to construct the asymptotic mean squared error given by:

AMSE(h1) =
h4

1
4

λ2
2

ˆ 1

0
|∂2

uρ(u)|22du +
ν0

Th1

ˆ 1

0
σ2(u)tr(Ω(u)−1)du,

(cf. Theorem 1). Then minimizing AMSE(h1) with respect to h1 provides the optimal bandwidth

hopt
1 given by:

hopt
1 = λ−2

2 T−1/5
ˆ 1

0

{
tr(Ω(u)−1)|∂2

uρ(u)|−2
2
}−1/5du (25)

However, note that (25) involves the unknown quantity ∂2
uρ(u) that therefore has to be estimated

first before the optimal bandwidth can be computed. Several other methods has been proposed in

the literature, one of which is multi-fold cross-validation see e.g. Cai et al. (2000b), Cai et al. (2000a)

which takes into account the time-series structure of the data. More precisely, we first partition the

data into Q groups (usually Q = 20), with the jth group consisting of the data points with indices:

dj = {Qk + j, k = 1, 2, 3, · · · }, j = 0, 1, 2, · · · , Q− 1.

We then fit the model and obtain the estimate of θ̂−j(u) given in (6) by using the remaining data

after deleting the jth group. Now denote by ∆̂L−dj,T the fitted values of ∆Lt,T using the data with
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the jth group deleted. Then the cross-validation criterion has the following form:

CV(h1) =
Q−1

∑
j=0

∑
i∈dj

[
∆Li,T − ∆̂L−dj,T

]2
.

Minimizing the CV(h1) with respect to h1 then yields the estimated bandwidth h?1 . In practice, and

in general, as established by Cai et al. (2000a) the cross-validation is not particularly sensitive to the

way the data is partitioned. The second-stage estimation procedure of estimating the conditional

variance σ2(u) via the local linear estimator is standard, and the optimal bandwidth h?2 is estimated

via conventional least-squares cross-validation, see e.g. Li and Racine (2007) for details.

5 Bootstrapping ST

Theorem 3 allows one to conduct inference for ST as the distribution of the test statistics is a sim-

ple normal distribution. Note also, that the test statistic ST is a nonparametric statistic, however

through aggregation it converges to the limit distribution with the standard parametric
√

T rate.

The bias term B(h1, h2) and the variance term V in Theorem 3 however contain unknown quan-

tities, such as ∂2
uρ(u). Although it is possible to estimate these unknown quantities, replacing them

with consistent estimates will result in additional approximation errors. We therefore propose a

bootstrap approach, which is capable of estimating the unknown variance V. In what follows, we

discuss the bootstrap procedure in the context of Theorem 3, however the same methodology will

be applied to obtain the bias and the forecast intervals in Theorem 5.

The asymptotics of ST is determined by the asymptotic distributions of the three random terms

Xt,T, ρ̂(t/T) and σ̂(t/T). A fixed regressor bootstrap is only capable of estimating the contributions

of the last two terms ρ̂(t/T) and σ̂(t/T). We therefore propose a time series bootstrap which we

set up in the following way. Create the bootstrap sample {∆L∗t,T}T
t=1 as follows:

∆L∗t,T = (X∗t,T)
′ρ̂g
(
t/T

)
+ σ̂g(t/T) · ε∗t,T, (26)

where ρ̂g(·), σ̂g(·) are the estimators of ρ(·), σ(·), respectively from the original sample with a

bandwidth g � h1 and where the bootstrap residuals ε∗t,T are constructed as follows: Define the

standardized residuals

ε̃t,T :=
ε̄t,T( 1

T ∑T
j=1 ε̄2

j,T

)1/2 , ε̄t,T = ε̂t,T −
1
T

T

∑
j=1

ε̂ j,T, ε̂t,T :=
∆Lt −X′t,T ρ̂g(t/T)

σ̂g(t/T)
. (27)
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Next construct ε∗t,T by randomly drawing with replacement from {ε̃t,T, t = 1, ..., T}. The es-

timators ρ̂∗(u), σ̂∗(u) are then constructed as in (6) and (8) but using ∆L∗t,T and Zu∗
t = Zu∗

t,T =

(X∗t,T, X∗t,T(t/T − u))′ with X∗t,T = (1, ∆L∗t−1,T, ..., ∆L∗t−d,T)
′ instead of the corresponding terms

with ∆Lt,T and using the original optimal bandwidths h1 and h2. As bootstrap statistics of ST,

we consider

S∗T :=
1
T

T

∑
t=1

φ(t/T)
(X∗t,T)

′ρ̂∗h1
(t/T)

σ̂∗h2
(t/T)

.

Let d2 denote Mallow’s distance, i.e. for random variables X, Y with distribution functions

FX, FY,

d2(X, Y) =
( ˆ 1

0
(F−1

X (x)− F−1
Y (x))2

)1/2
,

see Bickel and Freedman (1981). We are now able to state an asymptotic result for S∗T. To discuss

the bias of the bootstrap version S∗T, we have to pose the following assumption.

Assumption 4. The kernel K is three times continuously differentiable.

We next state our next result stating the validity of the bootstrap set-up described above.

Theorem 6. Let the conditions of Theorem 3 hold, and additionally suppose that Assumption 4 holds.

Suppose that Th5
1 = o(1) and that the pre-estimation bandwidth g satisfies Assumption 3 and

log(T)
Tg5 = O(1),

log(T)
Tg3h2

1
= O(1). (28)

Then it holds that

d2(
√

T(S∗T − S̃T),
√

T(ST −EST))
p→ 0,

where S̃T = 1
T ∑T

t=1 φ( t
T ) ·

E[X∗t,T |AT ]
′ ρ̂(t/T)

σ̂(t/T) and AT := (∆L1,T, ..., ∆LT,T).

We next comment on conditions on the bandwidths as well as give guidance on how Theorem

6 can be utilized in practice.

Remark 8. If h1 = cT−α, g = cgT−β, then it has to hold by (28) that

0 < β < min{1
5

,
1− 2α

3
} ≤ 1

5
< α < min{1

2
, 1− 2

q
},

This implies that the pre-estimation bandwidth g� h1 has to be chosen larger than h1, h2. In prac-

tice, one may simply choose g = 2h1. The quantity S̃T does not correspond to ST since E[X∗t,T|AT]
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is a smoothed version of Xt,T. In this sense, using S̃T ≈ ST may asymptotically not lead to correct

bootstrap quantiles. Instead, we propose to use S̃T ≈ S̃◦T, where

S̃◦T =
1
T

T

∑
t=1

φ(
t
T
) · (1, Ê′t)

′ρ̂(t/T)
σ̂(t/T)

,

where

Êt :=
(

Id×d − Γ̂(t/T)
)−1

(ρ̂0(t/T), 0, · · · , 0)′ ,

where Γ(·) matrix is defined in Theorem 4. Note that S̃◦T yields a valid approximation of S̃T since

E[X∗t,T|AT]− (1, Ê′t)
′ = Op(T−1).

6 Simulations

In this section we provide the simulation results for the size and the power of our test statistic

ST as well as demonstrating the sign forecasting methodology. Throughout this section we shall

be simulating ∆Lt, t = 1, · · · , T directly as the main purpose of this section is to investigate the

properties of our methodology under the known behavior for ∆Lt. We shall however produce ∆Lt

using various forecasting methods in our application in section 7. Given that Giacomini and White

(2006) also consider the question of forecast selection, throughout this section we replicate several

of their simulation exercises to make for easy comparison when possible.

Once the bootstrap is set up, the size and the power of the test is then calculated as follows.

We denote by ST,n the value of the test statistic ST in the n-th simulation, and let S?T,n,b be the

value of the bootstrap statistics S?T in the b-th bootstrap sample generated in the n-th simulation.

We denote by G?
n the empirical distribution function calculated from the sample of the bootstrap

values in n-th simulation, i.e. of {S?T,n,b − S̃◦T}B
b=1. Then the actual size of the test statistics can

be calculated as follows. Given a fixed nominal size α, for each simulated sample n ∈ {1, · · · , N},
calculate the (1− α)-quantile of G?

n, denoted by q?α,n. Finally we compute the actual size and power

corresponding to the nominal level α as

1
N

N

∑
n=1

1
(
ST,n > q?α,n

)
.

We start by investigating the size of our test statistic ST.
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6.1 Test Statistics: Size

For all simulations we set the number of simulations N = 1000 and we vary the number of boot-

strap replications, B, between B = 500, B = 750, and B = 1000. We start with replicating two

alternatives from Giacomini and White (2006) that constitute our null hypothesis. In particular we

simulate the loss difference ∆Lt as the following AR(1) process:

H
(1)
0 : ∆Lt = µ(1− ρ) + ρ∆Lt−1 + εt, εt ∼ i.i.d.N (0, 1) (29)

For each n ∈ {1, · · · , N} simulations we generate a sequence of loss differences ∆Lt of length

T = 150 according to (29), starting from the initial value of ∆Lt that equals the difference of

squared errors for forecasts of the second log difference of the monthly U.S. consumer price index

(CPI), CPI2016:12 implied by two models: i) a white noise; and ii) an AR(1) model for CPI estimated

over a window of size m = 150 using the data up to 2016:11. Moreover, we consider the scenario

with zero unconditional mean and ρ = (0, 0.05, · · · , 0.9).6

For the second null hypothesis, also considered in Giacomini and White (2006), for T = 150 we

generate the sequence of loss differences as follows:

H
(2)
0 : ∆Lt =

µ

p(1− p)
(St − p) + εt, εt ∼ i.i.d.N (0, 1), (30)

where St = 1 with probability p and St = 0 with probability 1− p, with p = 0.5. We thus have that

the unconditional mean E [∆Lt] = 0 irrespective of the value of µ, however

E [∆Lt|St] =

µ/p if St = 1

−µ/(1− p) if St = 0.

We set µ = 1 in this example. Finally, we simulate the data for ∆Lt,T for the sample of length

T = 1000 under H
(3)
0 such that mean is time-varying:

H
(3)
0 : ∆Lt,T = ρ0(t/T) (1− ρ1(t/T)) + ρ1(t/T)∆Lt−1,T + σ(t/T)εt, εt ∼ N (0, 1),

where σ(t/T) = 1 for all t = 1, · · · , T and

ρ0(t/T) = sin (8πt/T) , ρ1(t/T) =
1
4
(

sin (4πt/T) + 1
)
.

6We present the results for ρ = 0.3 only as varying ρ virtually leaves the results unchanged.
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Under H
(3)
0 the mean of ∆Lt is time-varying, however the overall mean of ∆Lt,T is still zero. For

simplicity we set the variance to be constant throughout. For each of the aforementioned nulls Ta-

ble 1 shows the simulated actual size for different levels of the nominal size α = 0.01, 0.05, 0.10, 0.15.

From Table 1 we can see that the actual size is very close to the nominal size for all levels and for

all nulls under consideration. The results are also stable regardless of the number of bootstrap

replications B.
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Table 1: Actual size versus nominal size of ST for various nulls.

Actual size versus nominal size of ST for null H
(1)
0

Bootstrap size/ nominal α α = 0.01 α = 0.05 α = 0.10 α = 0.15

B = 500 0.011 0.056 0.092 0.144

B = 750 0.010 0.054 0.096 0.152

B = 1000 0.009 0.051 0.104 0.151

Actual size versus nominal size of ST for null H
(2)
0

Bootstrap size/ nominal α α = 0.01 α = 0.05 α = 0.10 α = 0.15

B = 500 0.020 0.062 0.108 0.168

B = 750 0.018 0.057 0.107 0.160

B = 1000 0.013 0.050 0.103 0.153

Actual size versus nominal size of ST for null H
(3)
0

Bootstrap size/ nominal α α = 0.01 α = 0.05 α = 0.10 α = 0.15

B = 500 0.013 0.055 0.107 0.141

B = 750 0.012 0.051 0.105 0.145

B = 1000 0.012 0.050 0.102 0.148

Note: In this table B denotes the number of bootstrap replications. Number of simula-
tions N in all cases is always fixed to be N = 1000.
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6.2 Test Statistics: Power

We start by replicating two alternatives from Giacomini and White (2006) that also constitute alter-

natives for our test. The first alternative, which we denote by HGW
1,1 , simulates the loss differences

∆Lt according to (29) such that ρ = 0 and µ = (0, 0.05, · · · , 1). We fix the nominal size of the test to

be 5%. In Figure 3 below we show the power curves when applying our test as well as Giacomini

and White (2006) test.
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Figure 3: Power curves under alternative HGW
1,1 .

We next consider another alternative from Giacomini and White (2006) paper, which we further

denote by HGW
1,2 . In particular, we again generate the loss differences ∆Lt according to (30), where

we vary d = µ
p(1−p) = (0, 0.1, · · · , 1). Note that d represents the difference in expected loss between

two states. We apply our general test ST by setting the chosen weighting function to be the state

of the world, i.e. we set φt = St. In this case (30) constitutes an alternative for our null as well. We

plot the power curves in Figure 4 below.
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Figure 4: Power curves under alternative HGW
1,2 .

We now investigate the power of the test under several fixed alternatives that exhibit time

variation of the mean/variance process. We deliberately design the set of these alternatives to be

similar to our earlier time-varying null H
(3)
0 , however we add one additional feature that makes

for a deviation from the null. Under the first alternative H
(1)
1 we simulate the data as follows:

∆Lt,T = ρ0(t/T)(1− ρ1(t/T)) + ρ1(t/T)∆Lt−1,T + σ(t/T)εt, εt ∼ N (0, 1),

where σ(t/T) = 1 for all t = 1, · · · , T and

ρ0(t/T) = sin (8πt/T) + 0.1, ρ1(t/T) =
1
4
(

sin (4πt/T) + 1
)
.
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Figure 5: Data generating processes (DGP) under the null H
(3)
0 and the corresponding alternatives H

(1)
1 ,

H
(2)
1 and H

(3)
1 . Blue dots represent the data and red dots represents the true mean function µt.

Under H
(1)
1 , we shift upwards the intercept such that the overall mean of ∆Lt,T is no longer

zero. The deviation is hard to differentiate visually due to the variance around the mean, and the

mean still goes above and below zero, with relative performance overtaking back and forth.

Under H
(2)
1 we leave the mean the same as under the null and change the variance in a way

that all upswings of the sine function are less volatile and downswings are more volatile, more

precisely:

∆Lt,T = ρ0(t/T) (1− ρ1(t/T)) + ρ1(t/T)∆Lt−1,T + σ(t/T)εt, εt ∼ N (0, 1),

and where

ρ0(t/T) = sin (8πt/T) , ρ1(u) =
1
4
(

sin (4πt/T) + 1
)
,
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and setting w = T/8, the local variance is given by

σ(t/T) =

1 ∀ t ∈ [1 + kw, (k + 1)w] for k = 0, 2, 4, 6.

1.5 ∀ t ∈ [1 + kw, (k + 1)w] for k = 1, 3, 5, 7.

Note that although the mean function under H
(2)
1 is the same as under H0, due to the changes

in the variance, the upper swings shall receive more weight as they are less volatile, while the

opposite shall hold for the downswings. As the result, we expect the overall statistic to be positive,

pointing towards the preference of model B versus model A.

Finally, we consider the alternative H
(3)
1 that allows for a break in the intercept. In particular,

under H
(3)
1 we simulate the data as follows:

∆Lt,T = ρ0(t/T) (1− ρ1(t/T)) + ρ1(t/T)∆Lt−1,T + σ(t/T)εt, εt ∼ N (0, 1),

where ρ1(t/T) = 1
4

(
sin (8πt/T) + 1

)
and σ(t/T) = 1 for all t = 1, · · · , T, and

ρ0(t/T) =

sin(8πt/T) for t ∈ [1, T/2],

sin(8πt/T) + 0.1 for t ∈ [T/2 + 1, T].

This alternative highlights the ability for our statistic from deal with breaks. Here the deviation

to the null is smaller than the first alternative where the intercept added is throughout the whole

sample.

Table 2: Mean of ST.

Alternative E (ST)

H
(1)
1 0.13

H
(2)
1 0.21

H
(3)
1 0.06

Table 3: Power for fixed alternative hypotheses.

Nominal size H
(1)
1 H

(2)
1 H

(3)
1

α = 0.01 0.83 0.75 0.44

α = 0.05 0.96 0.86 0.52

α = 0.10 0.97 0.95 0.66

α = 0.15 0.97 0.98 0.68
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Figure 6: The figure displays the power curves for different alternatives. The dashed blue line depicts the

power curve under H
(3)
1 , the dashed violet line depicts the power curve under H

(2)
1 , and the dashed red

line depicts the power curve under H
(1)
1 .

Figure 6 shows that our test has very good power at any nominal level and is capable of de-

tecting relatively small deviations from the null. We finish this section with the following thought

experiment. Assume that the true data generating process for ∆Lt,T is indeed as under one of the

considered alternatives H
(1)
1 , H

(2)
1 or H

(3)
1 . Assume that researcher applies any currently available

test, e.g. Diebold and Mariano (1995) test or Giacomini and White (2006) test to decide whether

competing models have equal forecasting performance. As with any existing out-of-sample test

the researcher would have to choose the splitting point. Table 4 below displays the results of ap-

plying these tests as function of the cutoff point.
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Table 4: p−values of applying existing tests under our alternatives.

Results when ∆Lt is simulated according to H
(1)
1 .

Cutoff κ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

DM (1995) 0.005 0.203 0.808 0.021 0.016 0.582 0.031 0.215 0.631

GW (2006) 0.011 0.010 0 0 0 0 0 0 0

Results when ∆Lt is simulated according to H
(1)
2 .

Cutoff κ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

DM (1995) 0.001 0.036 0.187 0.067 0.012 0.656 0.048 0.492 0.609

GW (2006) 0.086 0.06 0.100 0.010 0.004 0.005 0.010 0 0

Results when ∆Lt is simulated according to H
(1)
3 .

Cutoff κ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

DM (1995) 0 0.464 0.185 0.018 0.016 0.877 0.039 0.263 0.367

GW (2006) 0 0.102 0 0 0 0 0 0 0

Note: The cutoff point κ is defined as the fraction of the estimation sub-
sample to the length of the full sample. The values in the table present the
p-values from the corresponding tests at the nominal level of α = 5%. The
p-values in bold indicate rejection at the nominal size α. DM abbreviates
Diebold and Mariano (1995) test of equal predictive ability and GW ab-
breviates Giacomini and White (2006) test of equal conditional predictive
ability with ht = [1, ∆Lt−1]

′.
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Table 4 shows that the conclusion of the tests, especially Diebold and Mariano (1995) test, can

change depending on the splitting point when applied to our alternatives. Giacomini and White

(2006) test suffers less from the splitting point problem and with a reasonable estimation sample

delivers consistent results. Interestingly, for many splitting points Diebold and Mariano (1995) test

does not reject the null of equal predictive ability, while Giacomini and White (2006) test does reject

the same null. This is indicative of changing relative performance as we knew ex-ante, hence this

is an example where the existing methodology based on constant relative performance is inappro-

priate. We stress that the presented thought experiment is not a reflection on the tests as they were

not designed to deal with the world of changing relative performance, but rather to highlight the

dangers that the researcher runs into when applying existing tests that rely on an assumption that

does not hold.

6.3 Sign Forecasting

In this section we assess how our methodology for sign forecasting, described in section 3.3,

performs with a known data-generating process. In this case the true probability PT(XT+1) :=

P (∆LT+1 ≤ 0|AT) is known, where recall AT := σ(∆Lt,T|t ≤ T) and we choose H
(3)
0 as our true

data generating process for ∆Lt,T. For simplicity, we also set ρ1(t/T) = 0 for all t = 1, · · · , T. We

then forecast the probability P (∆Lt+1 ≤ 0|At), starting from t = T = 100.

Figure 7: The red line plots the true probability P (∆Lt+1 ≤ 0|At) and the blue dots represent the estimate
P̂ (∆LT+1 ≤ 0|AT) starting at t = T = 100.
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Figure 7 displays the true probability P (∆Lt+1 ≤ 0|At) against its estimate P̂ (∆Lt+1 ≤ 0|At),

where for each point on the curve the data up to T is used, where T = 100, · · · , T. Overall, the

estimated probability is quite close to its true value and becomes more precise the more data is

used for the original estimation. This happens primarily due to the c.d.f. of the error term ε̂t,

defined in (21), being better estimated towards the end of the sample as more data is used. At the

final point in the sample, we forecast a probability of 0.3829 with a corresponding forecast interval

of [0.3520, 0.4200]. Finally, applying our criterion, given in eq. (24), we get Ĉ = −0.012, which

points to the fact that our estimated probability P̂ (∆Lt+1 ≤ 0|At) is on average overestimated by

approximately by 1.2% for this sample.

7 Application

In this section we apply our proposed methodologies to the data. We first go back to the motivating

example we presented in the introduction in Figure 1.

7.1 Forecasting IBM daily variance

We reconsider the example from our introduction using our new methodologies. Our data is daily

IBM returns spanning 03/01/2006-03/01/2017 and we use two models to forecast daily variance:

GARCH(1,1) model with Gaussian errors and GARCH(1,1) model with Student-t errors. The fore-

cast loss is taken to be the squared error, see eq.(2) and constructed via the recursive scheme de-

scribed in Section 2. We compute 5 minute realized variance series from the data and it is taken to

represent the "true" daily variance. We define ∆Lt to be ∆Lt :=
(
ε̂St

t
)2 −

(
ε̂G

t
)2, i.e. we subtract the

squared error produced by the GARCH(1,1) model with Gaussian errors from the squared error

produced by the GARCH(1,1) model with Student-t errors. Once ∆Lt has been constructed, we ap-

ply our proposed two-step nonparametric procedure to estimate the corresponding time-varying

mean and variance. Figure 8 below depicts µ̂t and σ̂2
t and τ̂t = µ̂t/σ̂t calculated according to (14).
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Figure 8: Plots of the estimates of τ̂t, µ̂t and σ̂2
t for IBM data, 2006-2017, using squared error loss and

recursive forecasting scheme.

For our statistic that aggregates average past performance, recall that each corresponding µ̂t is

weighted by the inverse of the standard error σ̂t. Hence whenever a spike occurs in the relative

forecasting performance (represented by the violet dashed lines), the µt in those periods get down

weighted. We next calculate the test statistic ST.

The value of the test statistic in this application example is ST = −0.01 with the corresponding

p−value of 0.86. In fact, in this particular example the null of Equal Predictive Ability is not

rejected at any levels of significance, indicating that the GARCH(1,1) model with normal errors is

performing very similarly to the GARCH(1,1) model with Student-t errors over all sample. This is

not surprising given the frequent overtaking of the relative forecasting performance of two models

as is seen in Figure 1.
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Figure 9: One-step ahead sign forecasting for the motivating example in the introduction.

Figure 9 presents the results of our pseudo out-of-sample sign forecasts. We see that primarily,

the probability of the GARCH(1,1) model with Student-t errors outperforming the GARCH(1,1)

model with normal errors is relatively high for most points in time with a few exceptions. Finally

applying the criterion given by eq. (24) we get the value Ĉ = −0.023, indicating that our forecasted

probabilities are on average overestimated by 2.3%. At the final point in the sample, we forecast a

probability of 0.3129 with a corresponding forecast interval of [0.2100, 0.3740]. Interestingly, this

probability does not conclude that GARCH(1,1) with Student-t errors should be selected for the

next step forecasting. This highlights the randomness inherent in forecasting next period proba-

bilities. Therefore, although our test of EPA test indicates that the two models have performed

similarly for forecasting, our second approach clearly indicates that for the immediate next period

the forecaster should select GARCH(1,1) with Gaussian errors if one is interested in selecting the

model with the higher probability of outperforming.

7.2 Forecasting macroeconomic indicators

In this section we consider an application where several models are compared against each other

in their ability to forecast multiple macroeconomic indicators. We consider the “balanced panel"

of the dataset FRED-MD, consisting of 128 monthly economic time series measured over January,

1959 - December, 2019, and apply the transformations to the original series, as documented in
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Appendix to the dataset7. We then use several forecasting models, described below, to construct

1-month ahead forecasts of four US macroeconomic variables: two real variables - industrial pro-

duction (abbreviated IP) and real personal income less transfers (abbreviated RPI); and two price

indices: consumer price index (abbreviated CPI) and producer price index (abbreviated PPI).

In what follows we denote by Yt the variable being forecasted. The first forecasting method

considers the full model Yt+1 = α + β′Xt + εt+1, where Xt contains all 128 predictors from the

FRED-MD dataset. To overcome multicollinearity in Xt, we follow Giacomini and White (2006)

and replace the groups of variables in Xt whose correlation is greater that 0.98 with their average.

The new Xt contains 113 predictors. We next apply Elastic Net (abbreviated E-Net) as a more

stabilized version of lasso which also allows for grouping effects, see Zou and Hastie (2005), to

select the relevant predictors. Let Zt = (1,X ′t )′, then Elastic Net estimator ν̂ of the parameter

vector ν is the solution of the following minimization problem:

ν̂ = arg min
ν∈Rp

{
1
T

T

∑
t=1

(Yt+1 − ν′Zt)
2 + λ1

p

∑
j=1
|νj|+ λ2

p

∑
j=1

ν2
j

}
,

where p is the dimension of the parameter vector ν and both tuning parameters λ1 > 0 and λ2 > 0

are selected by cross-validation.

To account for potential nonlinearity in the evolution of the forecasting performance we next

consider nonlinear model for the conditional mean of Yt+1. More precisely, we let

Yt+1 = m(Yt) + εt,

where the smooth function m(·) is estimated via local linear nonparametric regression. In partic-

ular, denote by Wy
t = (1,Yt − y)′ and further let Kh(x) := K(x/h)/h denote the kernel function

with h denoting the corresponding bandwidth, which is subsequently chosen via multi-fold cross-

validation. The local linear estimator is then obtained as the solution to the following minimization

objective:

v̂(y) = (m̂(y), ∂̂ym(y))′ = arg min
v∈R2

T−1

∑
t=1

Kh(Yt − y)
(
Yt+1 −v′Wy

t
)2

,

7The FRED-MD dataset is collected and constantly updated by the Federal Reserve Bank of St. Louise and can be
found online with the following link. For the variables we consider in this paper, the transformations are as follows: the
first log difference for RPI and IP variables; and the second log difference for CPI and PPI variables.
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with the explicit solution given by

v̂(y) =

(
T−1

∑
t=1

Kh (Yt − y)Wy
t (W

y
t )
′
)−1(T−1

∑
t=1

Kh (Yt − y)Wy
t Yt+1

)
. (31)

Next, we consider random forests model (abbreviated RF) proposed by Breiman (2001), which

has recently been found to perform well in the context of the predicting macroeconomic indicators

due to its ability to capture complex interaction structures in the data, see e.g. Medeiros et al.

(2019). Random forests model is essentially a collection of several regression trees, each grown

on a bootstrap sample of the original data. For a given tree the feature space is partitioned into a

set of rectangles and within each rectangle a simple unconditional mean model is estimated. To

avoid overfitting we first reduce the overall number of features Xt consisting of 128 predictors by

extracting the factors F̂t from Xt by implementing principal component analysis. The number of

factors j is chosen by applying Onatski (2009) test which results in j = 8 factors. The construction

of the forecast from the random forests model then proceeds as follows. For each bootstrap sample

b = 1, . . . , B a tree with Mb regions denoted by Ri,b, i = 1, . . . , Mb is grown by randomly selecting

a subset of the original factors F̂t and determining the splits by minimizing the sum of the squared

errors from a regression

Yt+1 =
Mb

∑
i=1

ci,bIi,b

(
F̂t; θi,b

)
, where Ii,b

(
F̂t; θi,b

)
=

1 if F̂t ∈ Ri,b (θi,b)

0 otherwise
,

where in the above θi,b characterizes the bth random forest and ith tree in terms of the splits that

result in region Ri,b. We let B = 1000 and use block bootstrap of Politis and Romano (1994) with the

block size chosen according to Politis and White (2004). Once all B random forests are constructed,

the forecast of Yt+1 made at time t is obtained as follows:

Ŷt+1|t =
1
B

B

∑
b=1

Mb

∑
i=1

ĉi,bIi,b

(
F̂t; θ̂i,b

)
.

As one of the benchmark models frequently used for forecasting macroeconomic indicators we

consider a simple autoregressive model (denoted by AR) given by:

Yt+1 = γ0 + γ1Yt + γ2Yt−1 + · · ·+ γp+1Yt−p + εt+1,

where the lag length p is selected by BIC. Finally, motivated by a successful use of the forecast
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combinations, see e.g. Stock and Watson (2004), Aiolfi et al. (2010), we consider equal weight fore-

cast (abbreviated EW) which is constructed as a simple average of the forecasts from the models

described above. We use the squared error as our loss function for evaluating the forecasts and

construct the time series of losses for k = 1 month according to the recursive scheme, described in

Figure 2 and setting T = 100. The loss differences are constructed as the loss of the column model

minus the loss of the row model in all our tables.

For forecast evaluation we perform our equal predictive ability test ST given in (15), results for

which are presented in Table 5. A negative test statistic indicates that the column model had lower

aggregated losses when compared to the row model, whereas a positive test statistic is indicative

of higher aggregated losses of the column model versus the row model. We report the value

of the test statistic ST together with the associated p−value calculated via bootstrap described

in section 5. The cases when we reject the null of EPA (13) are highlighted in bold. There are

several observations that we can make. Firstly, for two real variables, industrial production and

real personal income, random forests and equally weighted forecasts seem to perform the best as

seen by the the frequency of a rejection of test when any given model is compared with the random

forest model or equally weighted forecast. Moreover, in all of these rejection cases the positive

value of the test statistic indicates that the random forests/equally weighted forecast has smaller

value of the aggregated losses. This is perhaps not surprising since both models use averaging

and in the context of (potentially) unstable environments this proves to be especially useful since

it reduces the variance (and thus uncertainty about the forecasts themselves) and therefore on

average they perform better. For the price indices however all models seem to perform on average

quite similarly with the weak preference for random forests model for industrial production.

To proceed to the task of forecast selection, we now apply the sign forecasting methodology,

described in Section 3.3, results for which are presented in Table 6. For each of the variables we

report the forecasted probability P (∆LT+1 ≤ 0|AT) =: P̂ (XT+1), where XT+1 := (1, ∆LT)
′ at the

end of the sample as well as the associated forecast interval which we simply denote by [F̂I l , F̂Iu].

We say that the column model weakly outperforms the row model if the forecasted probability

PT(XT+1) > 0.5 but 0.5 ∈ [F̂I l , F̂Iu]. Similarly, we say that that the column model weakly under-

performs the row model if the forecasted probability PT(XT+1) < 0.5 but 0.5 ∈ [F̂I l , F̂Iu].

Furthermore, it is possible to generate the entire ranking of models by aggregating the bilat-

eral comparisons. Such a ranking will help the practitioner in selecting the best model (among

those under comparison) to use for forecasting at time T + 1. In each case, we begin by identi-

fying the strict bilateral out-performances and constructing a partial ranking of models based on

only strict out-performances. The remainder of the ranking is then filled based on weak bilateral
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out-performances. For example, in the case of industrial production variable, all but the random

forest model comparisons are strict with the random forest model comparisons being all weak,

which indicates that there is great uncertainty over the performance of the random forest model

in period T + 1. An important question is whether the overall constructed probability ranking is

always transitive. In Appendix A2 we give a detailed discussion that this is indeed the case under

fairly general conditions. In short, the ranking is transitive so long as the errors generating each

of the losses are jointly Gaussian and are symmetric around zero. Under these assumptions the

practitioner can construct the overall ranking by aggregating bilateral comparisons. In practice,

however, there might be cases where bilateral weak out-performances generates a non-transitive

ranking. This can happens due to a random estimation error. In such case the weak comparisons

are considered equal. However for our example there are no cases of non-transitive loops for the

strict out performance bilateral comparisons as one would expect.

The rankings for each of the forecasted variables are therefore as follows:

• Personal income: AR > EW ≥ RF ≥ NP ≥ E-Net;

• Industrial production: EW > AR > E-Net > NP ≥ RF;

• Producer price index: AR = E-Net ≥ NP ≥ EW > RF;

• Consumer price index: NP > AR ≥ EW ≥ E-Net > RF;

Specifically, autoregressive model dominates for personal income while for industrial produc-

tion the equally weighted forecast is projected to perform the best next month. For the producer

price index autoregressive model together with Elastic Net seem to be equally good and both

dominate the rest of the models in terms of the projected performance next month. Finally, for the

consumer price index the nonparametric regression is projected to perform much better than the

rest of the models under comparisons.

Interestingly, the random forests model is no longer the best performing model. Thinking fur-

ther about why our sign forecasting approach to ranking indicates that the random forests model

is never the best model for next period forecasting, we note that this is contrast to our statistic mea-

suring average performance where the forecast from random forests model together with equally

weighted forecast had the best historical performance. In this particular period of T+ 1, we see that

the forecast from the random forests model across all four series is always dominated by forecasts

from other models. However across all periods historically, the model that outperforms the ran-

dom forests model is most likely not the same for any of the four series. Our average performance

metric, due in part to the weighting we employ, favors models that perform well consistently and

40



with low variance over models that perform very well some of the time but not so well the other

times. Since random forests is essentially an improved modification of bagging and, as with any

averaging, reduces the noise leading to reduction in variance, it is therefore perhaps not surpris-

ing that random forests and equally weighted forecasts are favored by our average performance

metric. However forecasting one period ahead, one can expect to find a model that is likely to

perform better. The emphasis on conservatism based on historical performance versus projected

performance next period again emphasizes the difference between our two approaches.

Autoregressive model, on the other hand, performs quite well for all series. This is again per-

haps not surprising since it incorporates time series information, which in the context of slowly

changing environments is especially beneficial. Recall that another model, namely nonparametric

regression, also incorporates time series information, however apart from consumer price index, it

does not seem to be the favoured choice. One potential reason for this is that forecast from a non-

parametric regression uses estimated regression function m̂(·) which is time-invariant. However,

in slowly changing environments, depending on the period the forecast is made for, it is reasonable

to assume that the regression function is also changing over time. Therefore a time-varying non-

parametric regression might be an alternative model one might consider. That being said however,

for consumer price index the forecast from a nonparametric regression is the dominant choice. This

further highlights that in the context of changing environments the best model in terms of the fore-

casting performance is constantly changing and the average historical performance might not be

the best predictor of the future forecasting performance in such environments.

8 Concluding remarks

In this paper we address the issue of forecast evaluation and forecast selection in unstable envi-

ronments. Existing out-of-sample tests often suffer from low power, and in unstable environments

they can generate spurious and potentially misleading results. We address the possibility of unsta-

ble environments explicitly and provide two tests in such a context. The first compares the overall

historical performance of models and the second directly forecasts which model is more likely to

outperform the next period. We demonstrate that our methodology performs well across a variety

of applications, and our test has high power against a range of fixed and local alternatives.
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Appendix A1.

Consider the following hypothetical example. Assume the true data generating process for {yt}T
t=1

follows an AR(1) process:

yt = ρyt−1 + εt, εt ∼ i.i.d.(0, σ2), |ρ| < 1.

Furthermore, assume one uses two simple models to forecast yt one-step ahead:

• Model A uses ŷt+1|t = 0 for all t = 1, · · · , T as a forecast for yt+1;

• Model B uses ŷt+1|t = 0.1 for all t = 1, · · · , T as a forecast for yt+1;

Suppose that the forecaster uses the mean squared error (MSE) as the loss to assess the quality of

the forecasts, i.e.

LA
t = E

[(
yt+1 − ŷt+1|t

)2 |Ft

]
= ρ2y2

t + σ2,

and

LB
t = E

[(
yt+1 − ŷt+1|t

)2 |Ft

]
= ρ2y2

t + σ2 − 0.2ρyt + 0.01,

and therefore

∆LAB
t = LA

t −LB
t = 0.01− 0.2ρyt. (32)

From (32) it then follows that ∆LAB
t ≤ 0 if yt > 0.05/ρ,

∆LAB
t > 0 if yt < 0.05/ρ.

This example highlights the possibility of relative performance to be changing over time. Even

in a world where the data generating process is stationary, and the models used to forecast are

likewise stable, it is still possible for relative performance between models to not be constant.
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Appendix A2.

In this Appendix we show that when applying our forecasted probability in Theorem 5 for forecast

selection among models 1, · · · , n, true probability dominance is indeed transitive under conditions

we specify below. It is sufficient to show the argument for 3 generic models. Therefore let A, B, C

be 3 generic models used for forecasting. Let Li
t be forecast losses of models i = A, B, C, and let

∆LAB
t =: LA

t −LB
t , ∆LBC

t =: LB
t −LC

t , ∆LAC
t =: LA

t −LC
t .

Assume also that all three time series Li
t, i ∈ {A, B, C} are generated with different mean-zero

innovations εi
t, t ∈ Z and follow a time-varying autoregressive model (tvAR) model. Finally, we

assume that εi
t, i = A, B, C are either independent or jointly Gaussian distributed, i.e.

εABC
T+1 :=


εA

T+1

εB
T+1

εC
T+1

 ∼ N(0, Σ), (33)

where Σ is an arbitrary positive semi-definite matrix. Let AT = σ(εA
T , εB

T, εC
T, εA

T−1, εB
T−1, εC

T−1, ...)

and denote further

pAB := P
(

∆LAB
T+1 ≤ 0|AT

)
, (34)

pBC := P
(

∆LBC
T+1 ≤ 0|AT

)
(35)

and

pAC := P
(

∆LAC
T+1 ≤ 0|AT

)
. (36)

To establish transitivity we then need to show that the following holds:

Statement : if pAB > 1/2 and pBC > 1/2 =⇒ pAC > 1/2. (37)

The statement in (37) implies that the probability ranking is indeed transitive.

Proof of (37). Consider models A and B first. For model A we can write

LA
T+1 = µA + ZA,
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where µA = E[LA
T+1|AT] and ZA = LA

T+1 −E[LA
T+1|AT]. More precisely, the following decompo-

sition holds:

LA
T+1 =

∞

∑
k=0

WA
k εA

T+1−k + µA = WA
0 εA

T+1︸ ︷︷ ︸
=ZA

+
∞

∑
k=1

WA
k εA

T+1−k + bA

︸ ︷︷ ︸
=µA

= µA + ZA, (38)

where WA
k , bA depend on the corresponding parameters {ρA

s }T
s=T+1−k, {σA

s }T
s=T+1−k and for bA

we take k = ∞. Similar decomposition holds for LB
T+1 and LC

T+1. For models A, B consider the

difference between their stochastic parts:

ZA − ZB = WA
0 εA

T+1 −WB
0 εB

T+1 = (WA
0 ,−WB

0 , 0)εABC
T+1 ∼ N

(
0, (WA

0 ,−WB
0 , 0)Σ(WA

0 ,−WB
0 , 0)′

)
.

(39)

From the representation (38) it follows that:

1
2
< pAB = P(∆LAB

T+1 ≤ 0|AT) = P(µA − µB ≤ ZA − ZB|AT), (40)

and from (39) it further follows that ZA − ZB has median 0 conditionally on AT. Then from (40)

we further get that

µA − µB < 0

Similarly, if ZB − ZC has median 0 conditionally on AT, we get from 1
2 < pBC that

µB − µC < 0.

We therefore have µA − µC = (µA − µB) + (µB − µC) < 0. Finally, if ZA − ZC has median 0

conditionally on AT, then

pAC = P(µA − µC ≤ ZA − ZC|AT) >
1
2

.

Combining all of the above we therefore get the implication:

pAB >
1
2

, pBC >
1
2
⇒ pAC >

1
2

,

which establishes the proof of (37). �

50


	Introduction
	Forecast evaluation and selection in unstable environments
	Theoretical results
	Test Statistics
	Behavior under local alternatives
	Sign Forecasting

	Bandwidth selection
	Bootstrapping ST
	Simulations
	Application
	Forecasting IBM daily variance
	Forecasting macroeconomic indicators

	Concluding remarks
	References

