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1 Statistical decision theory

1 Statistical decision theory

Basic difference between machine learning and statistical learning:

• Machine learning invents models and algorithms which can ’learn’ from training
data and are available to generalize these findings to predict new outcomes

• Statistical learning is a discipline of mathematical statistics which formalizes the
models from machine learning and quantifies their (statistical) uncertainty. Fur-
thermore, the theoretical findings can be used to invent new or at least improve
existing machine learning algorithms by proposing meaningful rules for tuning
parameters.

Im this lecture, we consider the subdiscipline of supervised learning. In this setting, we
observe pairs of data (X, Y ), where X is called input and Y is called output. The goal
is to predict Y from X.

1.1 Statistical decision theory

Let (Ω,A,P) be a probability space.

Definition 1.1 (Supervised learning setting). Let X ⊂ Rd and Y = {1, ..., K} or Y = R.
Let P(X,Y ) be some distribution on X × Y . Let (Xi, Yi), i = 1, ..., n be i.i.d. random
variables with distribution P(X,Y ), the so-called training samples or training data.

• If Y = {1, ..., K}, then we say that the training data stems from a classification
problem,

• If Y = R, then we say that the training data stems from a regression problem.

Throughout the lecture, let (X, Y ) ∼ P(X,Y ) be a realization independent of (Xi, Yi),
i = 1, ..., n.

General goal of machine learning: Find a mapping f̂n : X → Y (computed from the
training samples (Xi, Yi), i = 1, ..., n), such that the expression f̂n(X) is near to Y . This
is formalized as follows. We equip X , Y with the Borel-σ-algebras B(X ), B(Y) such that
measurability is well-defined.

Definition 1.2. • A decision rule is a measurable mapping f : X → Y .

4



1 Statistical decision theory

• A loss function is a measurable mapping L : Y × Y → R≥0. Application of a
decision rule f to some X produces the loss L(Y, f(X)).

• The risk of a decision rule f is defined by R(f) := EL(Y, f(X)).

Example 1.3 (Examples of loss functions). • For regression problems Y = R:
Quadratic / squared loss L(y, s) = (y − s)2 or absolute loss L(y, s) = |y − s|.

• For classification problems Y = {1, ..., K}: 0-1-loss L(y, s) = 1{y 6=s}.

Given a loss function L and a distribution P(X,Y ), one can define the optimal decision
function associated to the corresponding supervised learning problem.

Definition 1.4. A measurable mapping f ∗ : X → Y which satisfies R(f ∗) =
minf :X→Y meas. R(f) is called Bayes rule or Bayes classifier (for classification problems).
The corresponding risk R(f ∗) is called Bayes risk.

For specific loss functions, one can provide more explicit expressions for f ∗.

Remark 1.5 (Optimal decision functions when P(X,Y ) is known). • Regression
problem, squared loss:

R(f) = EL(Y, f(X)) = E[(Y − f(X))2] =

∫ ∫
(y − f(x))2 dPY |X=x(y) dPX(x)

is minimal for f ∗(x) = E[Y |X = x] (conditional expectation of Y given X = x).

• Classification problem, 0-1-loss:

R(f) = EL(Y, f(X)) = P(Y 6= f(X)) =

∫
P(Y 6= f(X)|X = x) dPX(x)

is minimal for

f ∗(x) = arg min
k∈{1,...,K}

P(Y 6= k|X = x) = arg max
k∈{1,...,K}

P(Y = k|X = x).

f ∗(x) selects the class which is most probable for the given observation x (f ∗ is
also called MAP-classifier, MAP = maximum a posteriori).
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1 Statistical decision theory

1.2 Evaluation of algorithms

Given training data (Xi, Yi), i = 1, ..., n, our goal is to define a decision rule f̂n which is
as near as possible to f ∗. The function f̂n which maps the training samples to a decision
rule is called algorithm.

Definition 1.6 (Algorithm). A measurable mapping f̂n : Ω×X → Y is called algorithm,
if

(i) For each x ∈ X , the mapping f̂n(x) : Ω → Y is measurable with respect to
Tn := ((Xi, Yi))i=1,...,n,

(ii) For each ω ∈ Ω, f̂n(ω) : X → Y is a decision rule.

With some abuse of this terminology, we also may call f̂n a decision rule (in the sense of
(ii)). The evaluation of an algorithm takes place in two steps: For given training samples
(Xi, Yi), i = 1, ..., n, the expression f̂n is a decision rule and therefore can be evaluated by
the risk R(f̂n). Note that this expression still is a random variable dependent on (Xi, Yi),
i = 1, ..., n. By performing another expectation ER(f̂n), the influence of the training
samples on the decision rule f̂n is averaged. ER(f̂n) is a real number which therefore
expresses the ’average risk’ of f̂n. There are specific names for these quantities.

Definition 1.7. Let f̂n be an algorithm.

• R(f̂n) or ER(f̂n) is called generalization error,

• R(f̂n)−R(f ∗) or ER(f̂n)−R(f ∗) is called excess Bayes risk.

An algorithm learns with convergence rate ψ(n), if

ER(f̂n)−R(f ∗) ≤ ψ(n).

In the following chapters, we will also use a different formulation for convergence rate
results of an algorithm, namely

∀t ≥ 0 : P
(
R(f̂n)−R(f ∗) ≥ ψ(n) + t

)
≤ p(t)

with some function p : [0,∞)→ [0, 1] which is decreasing in t and satisfies limt↓0 p(t) = 0.

Such statements can be interpreted in the sense that R(f̂n)−R(f ∗) is at most ψ(n) with
large probability.
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1 Statistical decision theory

Based on model assumptions on P(X,Y ) and the specific approach which is used to derive
an algorithm, the decision rules produced by f̂n lie in some function class

F = Fn ⊂ {f : X → Y measurable}.

In general, one cannot hope that the model is ’correct’ in the sense that f ∗ ∈ F .
Therefore, one typically has the following decomposition.

R(f̂n)−R(f ∗) =
[
R(f̂n)− inf

f∈F
R(f)

]
︸ ︷︷ ︸

estimation error

+
[

inf
f∈F

R(f)−R(f ∗)
]

︸ ︷︷ ︸
approximation error

.

A larger class F leads to a smaller approximation error but to a larger estimation error.
With the next example, we provide an intuitive explanation of the approximation error.

Example 1.8. We consider a regression problem with X = Y = R and squared loss.
We assume that the distribution P(X,Y ) satisfies the following relation:

Y = f0(X) + ε

with some non-continuous function f0 : R → R and ε independent of X with Eε = 0.
Note that this does not describe the whole distribution P(X,Y ), but it clearly puts some
conditions on the relation between X and Y . These conditions are enough to derive a
meaningful expression of f ∗ and the approximation error. It holds that

f ∗(x) = E[Y |X = x] = f0(x) ⇒ R(f ∗) = EL(Y, f ∗(X)) = E[ε2].

If the algorithm f̂n is obtained from a procedure which forces f̂n ∈ F ⊂ {f : R →
R, f continuous} then it holds for f ∈ F that

R(f) = E[( Y︸︷︷︸
=f0(X)+ε

−f(X))2] = E[(f0(X)− f(X))2] + E[ε2].

Then, the approximation reads inff∈F R(f)−R(f ∗) = inff∈F E[(f0(X)− f(X))2] and is
clearly nonzero if F can not approximate non-continuous functions well.

1.3 Standard approaches to derive algorithms

Let F ⊂ {f : X → Y meas.} be some function class and L a loss function.
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1 Statistical decision theory

Definition 1.9 (Standard algorithm). Given some loss function L, the minimizer of the
so-called empirical risk R̂n(f)

f̂n ∈ arg min
f∈F

R̂n(f), Rn(f) :=
1

n

n∑
i=1

L(Yi, f(Xi))

is called standard algorithm.

If F is large, then the above optimization problem has no unique solution. There may
even exist f ∈ F such that R̂n(f) = 0 (’overfitting’). In this case, one typically in-
troduces a penalty term Jλ(f) which penalizes solutions with wrong properties. Here,
λ ∈ Λ is called dimensionality parameter or tuning parameter.

One example could be that one only wants to derive mapping with small second deriva-
tive. Then one could choose Jλ(f) = λ ·

∫
X f
′′(x) dx.

The corresponding optimization problem then reads as follows.

Definition 1.10 (Standard algorithm with penalization). Let L be a loss function and
J : F → R a mapping. The minimizer of the empirical risk

f̂n,λ ∈ arg min
f∈F

{
R̂n(f) + Jλ(f)

}
is called standard algorithm with penalization J .

Instead of L, one sometimes uses different loss functions L̃ in the empirical risk. Then
R̂n(f) is replaced by R̃n(f) := 1

n

∑n
i=1 L̃(Yi, f(Xi)). This will be often the case for

classification problems (see the later chapters).
For standard algorithms from Definition 1.9 and Definition 1.10, the following very
simple bound for the excess Bayes risk holds. We will never use this elementary bound,
but it gives an idea how the typical proof strategy looks like.

Proposition 1.11 (Basic inequality). Let f̃ ∈ arg minf∈F R(f). Then for f̂n from
Definition 1.9 it holds that

R(f̂n)−R(f̃) ≤ 2 sup
f∈F

∣∣R̂n(f)−R(f)
∣∣.
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1 Statistical decision theory

Proof. It holds that

R(f̂n)−R(f̃) = R̂n(f̂n)− R̂n(f̃) +
[
R(f̂n)−R(f̃)

]
−
[
R̂n(f̂n)− R̂n(f̃))

]
.

Definition f̂n ⇒ R̂n(f̂n)− R̂n(f̃) ≤ 0 ⇒

R(f̂n)−R(f̃) ≤ 2 sup
f∈F

∣∣R̂n(f)−R(f)
∣∣.

Remarks:

• Many machine learning algorithms (or at least parts of them) can be written in the
above standard algorithm form. The representation as an optimization problems
also allows for many approximative solution techniques (for instance, gradient
descent methods or iterative solvers).

• If we boil down all machine learning algorithms to the above standard algorithm
formulations, different algorithms only differ in the choice of the function class F
and the corresponding penalty Jλ(f). Theory is then derived under different model
assumptions on P(X,Y ). One goal of this lecture is to introduce several machine
learning algorithms and to work out the corresponding values of F and J .

• The basic inequality given in Proposition 1.11 is too weak to derive sharp results
for the convergence rate of the excess Bayes risk. However, it yields an important
information which quantity has to be analyzed theoretically: The supremum over
function classes supf∈F

{
R̂n(f)−R(f)

}
.

9



2 Linear algorithms for regression problems

2 Linear algorithms for regression problems

In this chapter, we consider regression problems with X = Rd, Y = R and loss function
L(y, s) = (y − s)2.

Definition 2.1 (Model assumption: Linear regression). With parameters β∗ =
(β∗1 , ..., β

∗
d) ∈ Rd it holds that

Y = (β∗)TX + ε =
d∑
j=1

β∗jXj,

where ε is independent of X with E[ε] = 0, E[ε2] = σ2.

If this model assumption holds true, we have

f ∗(x) = E[Y |X = x] =
d∑
j=1

β∗jxj.

This means that the model assumption implies some special (linear) structure of the
Bayes rule. Thus it is reasonable to search for corresponding decision rules also in the
space of linear functions,

F := {f : Rd → R : f(x) =
d∑
j=1

βjxj with β = (β1, ..., βd)
T ∈ Rd}.

In the following, we abbreviate R(f) = R(β) for f(x) =
∑d

j=1 βjxj ∈ F .

Lemma 2.2 (Risk and Bayes risk). Let Σ := E[XXT ]. Then it holds that

R(β)−R(β∗) = ‖Σ1/2(β∗ − β)‖2
2

and R(β∗) = E[ε2].

Proof. It holds that

R(β) = E[(Y − βTX)2] = E[((Y − (β∗)TX) + (β∗ − β)TX)2]

= E[ε2] + E[ε · (β∗ − β)TX] + E[(β∗ − β)TX)2]

= E[ε2] + E[‖Σ1/2(β∗ − β)‖2
2],
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2 Linear algorithms for regression problems

where we have used E[ε|X] = 0 and E[(aTX)2] = aTE[XXT ]a = aTΣa = ‖Σ1/2a‖2
2.

The statement R(β∗) = E[ε2] can be obtained from the above formula by plugging in
β = β∗.

We now apply the standard approach to derive an algorithm.

Definition 2.3 (LS estimator). Let (Xi, Yi) be training samples and

R̂n(β) :=
1

n

n∑
i=1

(
Yi −

d∑
j=1

βjXij

)2
.

The estimator
β̂ = β̂KQ = arg min

β∈Rd
R̂n(β)

is called least squares estimator (LS estimator) of β. The corresponding algorithm reads

f̂n(x) = f̂KQn (x) =
d∑
j=1

β̂jxj.

Lemma 2.4. Define the design matrix X, the regression vector Y and the noise vector
e via

X =

X11 . . . X1d
...

. . .
...

Xn1 . . . Xnd

 , Y =

Y1
...
Yn

 , e =

ε1
...
εn

 .

Then the training samples fulfill Y = Xβ∗ + e and the empirical risk has the form
R̂n(β) = 1

n
‖Y− Xβ‖2

2.

Moreover, it holds that (XTX)β̂ = XTY (the so-called normal equation). If X has full
rank, then it holds that

β̂ = (XTX)−1XTY.

Proof. These are basic calculations. The representation of β̂ can be obtained by setting
the derivativ equal to zero,

0 = ∂βR̂n(β) = 2XTY− 2XTXβ.
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2 Linear algorithms for regression problems

We now try to calculate the excess Bayes risk of the corresponding algorithm. Define
Σ̂ := 1

n
XTX. Then it holds that

β̂KQ = (XTX)−1XTY = (XTX)−1XTXβ∗ + (XTX)−1XT
e = β∗ + (XTX)−1XT

e,

thus

R(β̂KQ)−R(β∗) =
∥∥Σ1/2(β̂KQ − β∗)

∥∥2

2
=
∥∥Σ1/2(XTX)−1XT

e‖2
2 =

1

n

∥∥Σ1/2Σ̂−1XT
e√
n

∥∥2

2

=
1

n
‖Ae‖2

2,

where A := Σ1/2Σ̂−1 XT√
n
.

We analyze this quantity by first calculating the excess Bayes risk under for given X.
Since e is independent of X, tr(·) is linear and due to the rule tr(ABC) = tr(CAB) for
matrices A,B,C, we have

E[R(β̂KQ)|X]−R(β∗) =
1

n
E[‖Ae‖2

2|X]

=
1

n
E
[
tr(AeeTAT )

∣∣∣X] =
1

n
tr(AE[eeT ]︸ ︷︷ ︸

=σ2Id×d

AT ) =
σ2

n
‖A‖2

F

=
σ2

n
· tr(Σ1/2Σ̂−1Σ̂Σ̂−1Σ1/2)

=
σ2

n
· tr(ΣΣ̂−1).

We conclude that if Σ̂ = 1
n

∑n
i=1XiX

T
i ≈ E[XXT ] = Σ, then it holds that ER(f̂KQ) −

R(β∗) ≈ σ2d
n

.
This approximation does not take into account the variation of X. Due to the inverse,
it is not easily possible to derive an upper bound for the expectation of Σ̂−1. Therefore,
we only obtain a result for the excess Bayes risk which holds with high probability and
under additional assumptions (which could be relaxed but would lead to much more
complicated proofs). Throughout the lecture, we call a constant c universal if it is a
number not depending on any variable defined before (so in principle, it is something
like ’32’ but we are too lazy to provide the explicit value).

Theorem 2.5. Let ε ∼ N(0, σ2), X ∼ N(0,Σ). Then there exist universal constants
c1, c2 > 0 such that the condition

λmin(Σ)

2
≥ c1‖Σ‖(

max{log(n), d}
n

)1/2
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2 Linear algorithms for regression problems

implies for all t ≥ 1:

P(R(β̂KQ)−R(β∗) > 4c2
2t ·

σ2d

n
) ≤ e−t + n−1

Proof. Let ‖A‖ denote the spectral norm, ‖A‖2
F the Frobenius norm and λmin(A) the

smallest eigenvalue of the matrix A ∈ Rd×d.

The basic idea is to define an event on which Σ̂ is near to Σ. Put

En := {‖Σ̂− Σ‖ ≤ λmin(Σ)

2
}.

On En it holds that λmin(Σ̂) ≥ λmin(Σ)
2

and thus ‖Σ̂−1‖ ≤ 2
λmin(Σ)

. On En it holds that

‖A‖2
F = tr(AAT ) = tr(Σ Σ̂−1︸︷︷︸

=Σ−1+(Σ̂−1−Σ−1)

) = tr(Id×d) + tr(Σ̂−1(Σ− Σ̂))

≤ d+ ‖Σ̂−1‖F‖Σ− Σ̂‖F
≤ d+ d‖Σ̂−1‖ · ‖Σ− Σ̂‖ ≤ 2d. (1)

Now we have

P(R(β̂KQ)−R(β∗) > γn) ≤ P(R(β̂KQ)−R(β∗) > γn, En) + P(Ec
n)

≤ E[P(R(β̂KQ)−R(β∗) > γn|X)1En ] + P(Ec
n)

≤ E[P(‖Ae‖2
2 > nγn|X)1En ] + P(Ec

n),

To discuss these quantities, we use two lemmas from [7, Theorem 1] and [8, Corollary
2.2] without proof (so-called isoperimetric inequalities for normally distributed random
vectors): There are universal constants c1, c2 > 0, such that for all s, t > 0,

P(‖Σ̂− Σ‖ > c1‖Σ‖ ·max{d
n
,

√
d

n
,
s

n
,

√
s

n
}) ≤ e−s, (2)

P(‖Ae‖2 ≥ c2σ‖A‖F max{1,
√
t}) ≤ e−t. (3)

Let t ≥ 1. Based on these inequalities, on En it holds that

P(‖Ae‖2
2 ≥ 4c2

2t ·
σ2d

n
|X)

(1)

≤ P(‖Ae‖2 ≥ c2

√
tσ‖A‖F |X)

(3)

≤ e−t.

With n ≥ d and s = log(n) it holds that max{ d
n
,
√

d
n
, s
n
,
√

s
n
} = (max{log(n),d}

n
)1/2. Then

for λmin(Σ)
2
≥ c1‖Σ‖(max{log(n),d}

n
)1/2,

P(Ec
n) ≤ P(‖Σ̂−Σ‖ ≥ λmin(Σ)

2
) = P(‖Σ̂−Σ‖ > c1‖Σ‖·max{d

n
,

√
d

n
,
s

n
,

√
s

n
})

(2)

≤ e−s = n−1.
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2 Linear algorithms for regression problems

Problem: In many applications, d is large, in particular it may occur that d > n. Then
XTX is no longer invertible and the LS-estimator is not unique.

2.1 Ridge Regression

In the following, we use the following basic assumption: Only few components of X
are relevant for Y , that is, many components of β are zero or at least near to zero.

Thus we introduce a penalization for the size of the entries of β.

We use the following standard approach with penalization Jλ(β) = λ · ‖β‖2
2.

Definition 2.6 (Ridge estimator). Let λ ≥ 0 and

Jλ(β) = λ‖β‖2
2 = λ

d∑
j=1

β2
j .

The Ridge estimator is defined as

β̂λ = β̂ridgeλ = arg min
β∈Rd

{R̂n(β) + Jλ(β)}

= arg min
β∈Rd

{
‖Y− Xβ‖2

2 + λ‖β‖2
2

}
.

The corresponding algorithm is

f̂n,λ(x) = f̂ ridgen,λ (x) =
d∑
j=1

β̂λ,jxj.

The ridge estimator has an explicit representation.

Lemma 2.7. Let λ > 0. Then

β̂λ = (XTX + λnId×d)
−1XTY.

Proof. Building derivatives equal to zero for β 7→ R̂n(β) + λ · J(β).

14



2 Linear algorithms for regression problems

Remarks:

• In ridge regression, the matrix XTX is ’made invertible’ by adding a positive mul-
tiple of the identity matrix. Therefore, the ridge estimator also can be used in the
case d > n.

• The name ’ridge’ stems from the fact that the optimization problem is equivalent
to

min
β∈Rd

R̂n(β) s.t. ‖β‖2 ≤ t

for some suitable t > 0. Here, some explicit limit is provided for t.

We now start to analyze the excess Bayes risk of the ridge estimator, again given X. It
holds that

β̂λ − β∗ = −λn(XTX + λnId×d)
−1β∗ + (XTX + λnId×d)

−1XT
e

= −λ(Σ̂ + λId×d)
−1β∗ +

1

n
(Σ̂ + λId×d)

−1XT
e,

thus

R(β̂λ)−R(β∗) = ‖B +
1√
n
Ae‖2

2 = ‖B‖2
2 +

2√
n
〈B,Ae〉+

1

n
‖Ae‖2

2

where A = Σ1/2(Σ̂+λId×d)
−1 XT√

n
and B := λΣ1/2(Σ̂+λId×d)

−1β∗. Since Ee = 0, we have

E[R(β̂λ)|X]−R(β∗) =
σ2

n
‖A‖2

F + ‖B‖2
2

=
σ2

n
· tr
(
Σ(Σ̂ + λId×d)

−1Σ̂(Σ̂ + λId×d)
−1
)

+ λ2‖Σ1/2(Σ̂ + λId×d)
−1β∗‖2

2.

To discuss the approximation Σ̂ ≈ Σ in more detail, one has to define a similar event
as for the LS estimator, but this would be much more complicated here. Therefore,
we restrict ourselves to a ’heuristic’ analysis of the ridge estimator by simply replacing
Σ̂ ≈ Σ. Let Σ = UDUT be the spectral decomposition of Σ with orthogonal matrix
U and diagonal matrix D = diag(s1, ..., sd) (entries are the eigenvalues of Σ). Then it
holds that

E[R(β̂λ)|X]−R(β∗) ≈ σ2

n
· tr
(
Σ(Σ + λId×d)

−1Σ(Σ + λId×d)
−1
)

+ λ2‖Σ1/2(Σ + λId×d)
−1β∗‖2

2

=
σ2

n
· tr
(
D(D + λId×d)

−1D(D + λId×d)
−1
)

+ λ2‖D1/2(D + λId×d)
−1UTβ∗‖2

2

=
σ2

n

d∑
j=1

s2
j

(sj + λ)2
+ λ2 ·

d∑
j=1

sj(U
Tβ∗)2

j

(sj + λ)2
.

15



2 Linear algorithms for regression problems

If all eigenvalues are equal, that is, sj = s and if additionally (UTβ∗)j = b (j = 1, ..., d),
then the above expression simplifies to

σ2d

n
· s2

(s+ λ)2
+ λ2 sb2d

(s+ λ)2

min→
λ=

σ2
n
b2

σ2d

n
· b2s
σ2

n
+ b2s

≤ σ2d

n
.

We see that for a suitable choice of the penalization parameter λ, the excess Bayes risk
of the ridge estimator can be smaller than the corresponding upper bound of the LS
estimator.

2.2 LASSO estimator

Approach: The most obvious choice to penalize β would be of the form ‖β‖0 = #{j =
1, ..., d : βj 6= 0}. Then, one would simply penalize the number of non-zero entries of β.
However, this leads to NP-hard optimization problems whose solutions are not accessible
in practice. One therefore uses a different norm which has similar properties but leads
to convex optimization problems.

Definition 2.8 (Lasso - Least absolute shrinkage and selection operator). Let λ ≥ 0
and

Jλ(β) = λ · ‖β‖1 = λ
d∑
j=1

|βj|.

The LASSO estimator (’least absolute shrinkage and selection operator’) is given by

β̂λ = β̂lassoλ ∈ arg min
β∈Rd

{
R̂n(β) + Jλ(β)

}
= arg min

β∈Rd

{ 1

n
‖Y− Xβ‖2

2 + λ · ‖β‖1

}
.

The corresponding algorithm reads

f̂n,λ(x) = f̂ lasson,λ (x) =
d∑
j=1

β̂λ,jxj.

There exists no easy closed-form solution for β̂lassoλ besides some special cases.

Remark: ’selection operator’ means that β̂λ really ’selects’ components j of β∗. The
quantity β̂λ has some entries which are exactly zero.
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2.3 Restricted Eigenvalue property

We now investigate the theoretical properties of the LASO estimator. In the following
we work with the following assumption: Only few entries of X are relevant for Y , that
is, many entries of β∗ are zero.

Definition 2.9 (Notation). For β ∈ Rd, define

S(β) := {j ∈ {1, ..., d} : βj 6= 0}.

For S ⊂ {1, ..., d} and v ∈ Rd, put vS := (vj1{j∈S})j=1,...,d.

If it would hold that d � n, then Σ̂ would be invertible and the smallest eigenvalue
would satisfy (we use the Rayleigh quotient formulation of the smallest eigenvalue)

λmin(Σ̂) := inf
v∈Rd

vT Σ̂v

‖v‖2
2

> 0.

Then Σ̂ would be one-to-one (injective) and the linear equation system Σ̂β = 1
n
XTY

would lead to the (unique) least squares estimator.

In the case d� n, one has λmin(Σ̂) = 0. The important difference is that we only search
for estimators β̂ which non-zero entries at the components S(β∗). This means that in
principle we only need injectivity of Σ̂ on the set

C̃ = {β ∈ Rd : S(β) = S(β∗)} = {β ∈ Rd : ‖βS(β∗)c‖1 = 0},

or translated to the smallest eigenvalue,

inf
v∈C̃

vT Σ̂v

‖v‖2
2

= inf
v∈C̃

vT Σ̂v

‖vS(β∗)‖2
2

> 0. (4)

However, a theoretical statement cannot pose assumptions on the random matrix Σ̂.
Because of the noise in the model, we also cannot transfer condition (4) directly to Σ.
Instead, we ask that on the set

C := {β ∈ Rd : ‖βS(β∗)c‖1 ≤ 3‖βS(β∗)‖1}

it holds that

Λmin(Σ) := inf
v∈C

vTΣv

‖vS(β∗)‖2
2

> 0,

the so-called restricted eigenvalue property (REP). Using Λmin(Σ), we can state the
following theorem for the LASSO estimator.
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2 Linear algorithms for regression problems

Theorem 2.10. Let ε ∼ N(0, σ2), X ∼ N(0,Σ) and Σjj = 1 (j = 1, ..., d). Define
s := #S(β∗). Then there exist universal constants c1, c2 > 0 such that the condition

n ≥ c1
‖Σ‖

Λmin(Σ)2
s log(ed/s)

implies: For each t ≥ 0 and

λ ≥ 6
√

2σ√
n

√
log(d) + t,

it holds that
P(R(β̂λ)−R(β∗) > 16λ2 s

Λmin(Σ)
) ≤ e−t + 2de−c2n.

Proof. We abbreviate S = S(β∗). The basic idea is to define two events on which we
can replace Σ̂ ≈ Σ. These events read

B1 := {∀j ∈ {1, ..., d} : Σ̂jj ≤
3

2
Σjj}

and

B2 := {∀v ∈ C :
1√
2
‖Σ1/2v‖2 ≤ ‖Σ̂1/2v‖2}.

Then it holds that

P
(
R(β̂)−R(β∗) > 16λ2 s

Λmin(Σ)

)
≤ P

(
‖Σ1/2(β̂ − β∗)‖2

2 > 16λ2 s

Λmin(Σ)
, B1 ∩B2

)
+ P(Bc

1) + P(Bc
2)

≤ E
[
P
(
‖Σ1/2(β̂ − β∗)‖2

2 > 16λ2 s

Λmin(Σ)

∣∣∣X)1B1∩B2

]
+ P(Bc

1) + P(Bc
2).

In the first probability, we can consider all terms depending on X as deterministic, that
is, one only has to analyze the variation from e.

1. Basic inequality: R̂n(β̂) + Jλ(β̂) ≤ R̂n(β∗) + Jλ(β) implies

1

n
‖X(β̂ − β∗)‖2

2 + λ‖β̂‖1 ≤
2

n
e
TX(β̂ − β) + λ‖β∗‖1

≤ 2

n
‖eTX‖∞ · ‖β̂ − β∗‖1 + λ‖β∗‖1.
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2. Define A := { 2
n
‖eTX‖∞ ≤ λ

2
}. On A it holds that

2

n
‖X(β̂ − β∗)‖2

2

2·(1)

≤ λ ·
{

‖β̂ − β∗‖1︸ ︷︷ ︸
=‖β̂S−β∗S‖1+‖β̂Sc‖1

+2 ‖β∗‖1︸ ︷︷ ︸
=‖β∗S‖1

−2 ‖β̂‖1︸︷︷︸
=‖β̂S‖1+‖β̂Sc‖1

}
≤ λ ·

{
‖β̂S − β∗S‖1 − ‖β̂Sc‖1 + 2(‖β∗S‖1 − ‖β̂S‖1)

}
≤ λ ·

{
3‖β̂S − β∗S‖1 − ‖β̂Sc‖1

}
.

3. Because of (2), on A it holds that: β̂ − β∗ ∈ C.

4. On B1 it holds that

P(Ac|X) = P
(

max
j=1,...,d

∣∣∣ 1
n

n∑
i=1

Xijεi

∣∣∣ > λ

2

∣∣∣X)
≤ d max

j=1,...,d
P
(∣∣∣ 1√

n

n∑
i=1

Xijεi︸ ︷︷ ︸
∼N(0,σ

2

n

∑n
i=1 X

2
ij)=N(0,σ2Σ̂jj)

∣∣∣ > λ
√
n

4

∣∣∣X)

≤ d · 2(1− Φ(
λ
√
n

4σΣ̂
1/2
jj

))
auf D

≤ 2d · exp
(
− 1

2

(λ√n
6σ

)2
) Condition on λ

≤ e−t.

because of 1− Φ(x) ≤ e−
x2

2 (Φ the distribution function of N(0, 1)).

5. On B2 it holds that Λmin(Σ̂) ≥ Λmin(Σ)
2

. On A ∩B2 it holds that

‖β̂S − β∗S‖2
1 ≤ s · ‖β̂S − β∗S‖2

2

Def. Λmin(Σ̂), (3)

≤ ‖Σ̂1/2(β̂ − β∗)‖2
2︸ ︷︷ ︸

= 1
n
‖X(β̂−β∗)‖22

· 2s

Λmin(Σ)
.

6. On A ∩B2 it holds that

2

n
‖X(β̂ − β∗)‖2

2 + λ · ‖β̂ − β∗‖1︸ ︷︷ ︸
=‖β̂S−β∗S‖1+‖β̂S‖1

(2)

≤ 4λ‖β̂S − β∗S‖1

(5)

≤ 1√
n
‖X(β̂ − β∗)‖2 · 4λ

( 2s

Λmin(Σ)

)1/2

4ab≤a2+4b2

≤ 1

n
‖X(β̂ − β∗)‖2

2 + 8λ2 s

Λmin(Σ)
.

Subtracting 1
n
‖X(β̂ − β∗)‖2

2 from both sides yields

‖Σ̂1/2(β̂ − β∗)‖2
2 =

1

n
‖X(β̂ − β∗)‖2

2 ≤ 8λ2 s

Λmin(Σ)
. (5)

19
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7. Replacement of Σ̂ by Σ: On A ∩B2 it holds that

‖Σ1/2(β̂ − β∗)‖2
2 ≤ 16λ2 s

Λmin(Σ)
.

8. Bounding the probability ofB1, B2: [20, Theorem 1.6] (cf. also [13]) implies that

there exists constants c1, c2 > 0, such that for n ≥ c1
‖Σ‖

Λmin(Σ)2 s log(ed/s) it holds
that

P(Bc
2) ≤ 2 exp(−c2n).

Thus,

P(Bc
1) ≤ d max

j=1,...,d
P(Σ̂jj ≥

3Σjj

2
) ≤ d max

j=1,...,d
P(

n∑
i=1

X2
ij︸ ︷︷ ︸

∼χ2(n)

>
3n

2

)

≤ d(
3

2
e1− 3

2 )n/2,

since 1 − Fχ2(n)(zn) ≤ (ze1−z)n/2 (here, Fχ2(n) is the distribution function of the
χ2-distribution, cf. [6, Lemma 2.2]).

Remarks:

• The upper bound for the convergence rate of the excess Bayes risk of the LASSO
estimator is minimized for λ = 6

√
2 · σ√

n

√
log(d). Then, it reads

16λ2 s

Λmin(Σ)
=

Zahl

Λmin(Σ)
· σ

2s

n
· log(d).

This rate can be interpreted as follows: β̂λ behaves like the LQ estimator in a model
with s instead of d dimensions / components instead of d. The LASSO estimator
β̂λ has to ’pay’ with a factor log(d) for the missing insight which components are
non-zero. This is a rather small price to pay even if d is large.

• One can prove similar theoretical statements without the conditions ε ∼ N(0, σ2)
and X ∼ N(0,Σ) and still can preserve the small log(d) term.

• Regarding the REP: Under the normalization condition Σjj = 1, the eigenvalues of

Σ̂ and Σ are small if many components of X are strongly correlated (for instance,
Σ is not invertible if the first components coincide, X1 = X2). Σ would also be
non-invertible if one component of X has no variance, but this is excluded by the
assumption that Σjj = 1. Therefore, the smallest eigenvalue λmin(Σ) measures
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how strongly the components of X are correlated. Note that a strong correlation
of X is a problem for estimation of β∗, but not for the excess Bayes risk itself: In
the extreme case X1 = X2, it is clear that β̂ cannot distinguish the values of β∗1
and β∗2 , but it can still provide good predictions through Xβ̂. Unfortunately, our
proof technique transfers the estimation quality of β∗ via (5) to an upper bound
of the excess Bayes risk, therefore this fact is not adequately represented in the
result.
Roughly speaking, the REP reduces the condition on the injectivity on Σ to a
condition on the injectivity on the components with indices S(β∗).

• The assumption Σjj = 1 is only to provide an easier result. In practice, this normal-
ization can be obtained by standardizing X1, ..., Xn before computing the LASSO
estimator (that is, center Xi and divide by the empirical standard deviation).

2.4 Exercises

Task 1 (Discussion: Proof of Theorem 2.5). Let A ∈ Rd×d and e ∼ N(0, σId×d).

1. Show that

P(‖Ae‖2 ≥ σ‖A‖F
√
t) ≤ 1

t
.

2. Discuss in which sense this result is weaker than the result given in the lecture,

P(‖Ae‖2 ≥ c2σ‖A‖F max{1,
√
t}) ≤ e−t.

Now let X1, ..., Xn : Ω → Rd be i.i.d. N(0,Σ) distributed. Let En := {‖Σ̂ − Σ‖ ≤
λmin(Σ)

2
}. Denote by ‖Σ‖ the spectral norm and ‖Σ‖2

F :=
∑d

j,k=1 Σ2
jk the Frobenius

norm.

(c) Show that

P(‖Σ̂− Σ‖ ≥ x) ≤ 1

n

{tr(Σ)2 + ‖Σ‖2
F}

x2
.

Hint: It holds that ‖Σ‖ ≤ ‖Σ‖F and E[X2
1jX

2
1k] = ΣjjΣkk + 2Σ2

jk.

(d) Conclude that

P
(
‖Σ̂− Σ‖ ≥ 1√

n
{tr(Σ)2 + ‖Σ‖2

F}1/2x
)
≤ 1

x2
.

(e) Discuss in which sense the above inequality is weaker than the lemma from the
lecture,

P
(
‖Σ̂− Σ‖ ≥ c1‖Σ‖ ·max{d

n
,

√
d

n
,
x

n
,

√
x

n
}
)
≤ e−x.
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Task 2 (Ridge estimator). In practice it is common to consider the linear model Y =
XTβ+ ε with X1 = 1, that is, the first component of X is constantly 1 and not random.
In this case, the ridge estimator is replaced by

β̂ ∈ arg min
β∈Rd

{
R̂n(β) + λ ·

d∑
j=2

β2
j

}
,

that is, the first component is not penalized in its size.

1. Why this is meaningful?

2. Derive an explicit expression of β̂ in terms of X,Y.

Task 3 (Large deviations).

1. Let X ∼ N(0, 1). Show that for t > 0, P(X ≥ t) ≤ exp(− t2

2
).

Hint: You may use Markov’s inequality with g(t) = ect and appropriately chosen
c ≥ 0.

2. Let X ∼ N(0, σ2). Show that

P(|X| > σt) ≤ 2 exp(−t
2

2
), P(|X| > σ

√
2t) ≤ 2e−t.

Let X1, .., Xn be i.i.d. with E[X2
1 ] = σ2 and |X1| ≤ M , where σ2,M > 0 are constants.

Then, the so-called Bernstein inequality holds: For all x > 0,

P
( 1√

n

n∑
i=1

(Xi − EXi) ≥ x
)
≤ exp

(
− 1

2

x2

σ2 + Mx√
n

)
.

(c) Discuss the relation between Bernstein’s inequality and the statement in (a).

(d) Show that for any t > 0,

P
( n∑
i=1

(Xi − EXi) ≥
√
nσ
√
t+Mt

)
≤ e−t/4.

(e) Show that with probability ≥ 1− δ (δ ∈ (0, 1)), it holds that

n∑
i=1

(Xi − EXi) ≤ 2
√
nσ

√
log(

1

δ
) + 4M log(

1

δ
).
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Task 4 (Discussion: Theorem 2.10). The convergence rate of the LASSO estimator from
Theorem 2.10 reads

1

Λmin(Σ)
· σ

2s

n
· log(d).

One of the assumptions in the theorem is that n ≥ c1
‖Σ‖

Λmin(Σ)2 s · log(ed/s).

1. Compare this assumption on n with the assumption n ≥ c′1 ·
‖Σ‖2

λmin(Σ)2 · d stated in
the theorem of the LS estimator.

2. Recall: Why the additional factor 1
Λmin(Σ)

occurs in the rate of the LASSO estima-
tor which is not present for the LS estimator?

Regarding the Restricted Eigenvalue Property: Recall that

Λmin(Σ) = inf
v∈C

vTΣv

‖vS‖2
2

, C := {v ∈ Rd : ‖vSc‖1 ≤ 3‖vS‖1}.

(c) Show the following statement: If Σ = Id×d, then Λmin(Σ) ≥ 1.

(d) Discuss why the scenario in (c) in not realistic, in particular for large d.

Consider for ρ ∈ (0, 1)

Σ =


1 0 . . . 0 ρ

0
. . . . . .

...
...

...
. . . . . . 0 ρ

0 . . . 0 1 ρ
ρ . . . ρ ρ 1


One can show that the eigenvalues of Σ are given by {1, ..., 1, 1−(d−1)1/2ρ, 1+(d−1)1/2ρ}.

(e) Determine a condition for ρ such that λmin(Σ) > 0.

(f) Let S = {1, ..., s}. Derive a lower bound for Λmin(Σ) which only depends on s but
not on d. From this, derive a condition for ρ such that Λmin(Σ) > 0.

Task 5 (Proof of Theorem 2.10: Analysis of B1). In Theorem 2.10 we defined the event

B1 := {∀j ∈ {1, ..., d} : Σ̂jj ≤
3

2
Σjj},

where Σ = E[XXT ], Σ̂ = 1
n

∑n
i=1XiX

T
i and Σjj = 1 (j ∈ {1, ..., d}).

1. Show that for t < 1
2
, one has

P(Bc
1) ≤ d · ((1− 2t)e3t)−n/2.

Hint: For Z ∼ N(0, 1) it holds that EetZ2
= (1− 2t)−1/2.

23



2 Linear algorithms for regression problems

2. Let c := 3
4

+ log(1
2
) > 0. Show that for n ≥ 2

c
(log(d) + x), we have P(Bc

1) ≤ e−x.

Task 6 (Generalizations of Theorem 2.10). In the situation of Theorem 2.10, we inves-
tigate the probability

P
( 2

n
‖eTX‖∞ ≥

λ

2

∣∣∣X) = P
(

max
j=1,...,d

∣∣∣ 1√
n

n∑
i=1

εiXij

∣∣∣ > λ
√
n

4

∣∣∣X)
and the corresponding choice of λ. For simplicity, we assume that X is deterministic and
satisfies 1

n

∑n
i=1X

2
ij = 1. Additionally, let εi, i = 1, ..., n be i.i.d. with E[ε2

1] = σ2.

1. Repeat the proof of the lecture: Show that if ε ∼ N(0, σ2), we have

P
( 2

n
‖eTX‖∞ ≥

λ

2

)
≤ 2d exp

(
− 1

2

(λ√n
4σ

)2
)
.

2. Prove that

P
( 2

n
‖eTX‖∞ ≥

λ

2

)
≤ d ·

( 4σ√
nλ

)2

.

3. Let p ≥ 2. Show the following statement: If E[|ε|p] = µpp with some µp ∈ R, then
it holds that

P
( 2

n
‖eTX‖∞ ≥

λ

2

)
≤ d ·

(4p1/2µp
λ
√
n

)p
.

Hint: For independent random variables Ai, i = 1, ..., n the inequality E[|
∑n

i=1Ai|p]1/p ≤
p1/2(

∑n
i=1 E[|Ai|p]2/p)1/2 holds (cf. [?], Theorem 2.1).

Starting from now, suppose that |Xij| ≤ C (i = 1, ..., n, j = 1, ..., d) with some constant
C > 0.

(d) The following inequality is called Nemirovski’s inequality (cf. Lemma 14.24 in [5]):
For independent random variables Ai ∈ Rd, i = 1, ..., n, we have

E
[

max
j=1,...,d

∣∣ n∑
i=1

(Aij − EAij)
∣∣] ≤ (8 log(2d))1/2 · E

[
max
j=1,...,d

n∑
i=1

A2
ij

]1/2
.

Show that

P
( 2

n
‖eTX‖∞ ≥

λ

2

)
≤ 4(8 log(2d))1/2Cσ

λ
√
n

.
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3 Basics of classification problems; linear models in
classification problems

In this chapter we assume that X ⊂ Rd, Y = {1, ..., K} with K ∈ N the number of
classes, L(y, s) = 1{y 6=s} the 0-1-loss. We know that in this case, the Bayes rule reads

f ∗(x) ∈ arg max
k∈{1,...,K}

P(Y = k|X = x).

Caution: For regression problems, f ∗ is PX-a.s. uniquely determined. In classification
problems it can happen that f ∗ is nowhere unique. For instance, in the special case of
K = 2 classes it could be that for all x ∈ X , P(Y = 1|X = x) = P(Y = 2|X = x) = 1

2
.

In this chapter we make the high-level assumption that f ∗ is uniquely determined.

3.1 Decision regions, decision boundaries, discriminant functions

Each decision rule f : X → Y partitions the space X into decision regions which are
separated by decision boundaries.

Definition 3.1. Let f : X → Y be a decision rule. Then

Ωk(f) := {x ∈ X : f(x) = k}, k ∈ Y

is called the decision region associated to f and class k. The set

∂Ωkl(f) := ∂Ωk(f) ∩ ∂Ωl(f)

is called decision boundary between the classes k, l ∈ Y .
Accordingly, Ω∗k := Ωk(f

∗) and ∂Ω∗kl := ∂Ωkl(f
∗) are called optimal decision regions /

decision boundaries.

In many classification problems, it is hard to estimate f ∗ directly. One therefore tries
to transfer the estimation problem to so-called discriminant functions.

Definition 3.2. Let f : X → Y be a decision rule. Measurable mappings δk = δk(f) :
X → R are called discriminant functions with respect to f if

Ωk(f) = {x ∈ X : δk(x) = max
l∈Y

δl(x)}.

Accordingly, δ∗k : X → R are called optimal discriminant functions if

Ω∗k := {x ∈ X : δk(x) = max
l∈Y

δl(x)}.
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3 Basics of classification problems; linear models in classification problems

There exist ’standard’ discriminant functions.

Lemma 3.3. 1. The functions δ∗k(x) = P(Y = k|X = x) are optimal discriminant
functions.

2. If h : (0, 1)×X → R is strictly increasing with respect to its first component, then

δ∗k(x) = h(P(Y = k|X = x), x)

are optimal discriminant functions as well.

Proof. It holds that

Ω∗k := {x ∈ X : f ∗(x) = k} = {x ∈ X : P(Y = k|X = x) = max
l∈Y

P(Y = l|X = x)}.

The second statement follows from the equivalence

P(Y = k|X = x) = max
l∈Y

P(Y = l|X = x)

⇐⇒ h(P(Y = k|X = x), x) = max
l∈Y

h(P(Y = l|X = x), x).

One standard approach to estimate f ∗ is given by estimating δ∗k, k ∈ Y under a spe-
cific model assumption. A very simple model is given by assuming that the decision
boundaries have a linear structure.

Definition 3.4. A decision rule f has linear decision boundaries if there exist linear
discrimininant functions for f . Formally: There exist β(1), ..., β(K) ∈ Rd and discriminant
functions δk(f) such that δk(f) = xTβ(k), k = 1, ..., K.
A distribution P(X,Y ) has linear optimal decision boundaries if there exist linear optimal
discriminant functions.

The motivation for this definition is as follows: The decision boundaries are sets where
two discriminant functions coincide. That is,

∂Ωkl(f) ⊂ {x ∈ X : xTβ(k) = xTβ(l)},
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3 Basics of classification problems; linear models in classification problems

are then subsets of a line.
Caution: If a distribution has linear decision boundaries, then one only knows that
optimal linear discriminant function exist, but there are a lot of other nonlinear (optimal)
discriminant functions. An example is given in the next subsection.

3.2 Logistic regression

Approach: We want to define a model with optimal linear decision boundaries, that
is, we ask the model to allow for linear optimal discriminant functions. A possible
assumption could look like

P(Y = k|X = x) = δ∗k(x)
!

= xTβ∗(k)

with some β∗(k) ∈ Rd, k = 1, ..., K.

Problem: This is not a reasonable approach since the left hand side attains values in
∈ [0, 1], but the right hand side can attain all values in R.

Instead, we make use of Lemma 3.3(ii): We assume that

h(P(Y = k|X = x), x) = δ∗k(x)
!

= xTβ∗(k), k = 1, ..., K

with a suitable h : [0, 1] × X → R which is strictly increasing with respect to its first
argument.

Definition 3.5 (Model: Logistic regression). For k = 1, ..., K − 1 there exist β∗(k) ∈ Rd

such that for all x ∈ X ,

log
( P(Y = k|X = x)

P(Y = K|X = x)

)
= xTβ∗(k). (6)

Lemma 3.6. The following conditions are equivalent to the model assumption from
Definition (6)

P(Y = k|X = x) =
exp(xTβ∗(k))

1 +
∑K−1

k=1 exp(xTβ∗(k))
, k = 1, ..., K − 1,

P(Y = K|X = x) =
1

1 +
∑K−1

k=1 exp(xTβ∗(k))
.
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Proof. Apply exp on both sides of (6) and make use of
∑K

k=1 P(Y = k|X = x) = 1.

Remark: The name ’logistic regression’ is based on the representation of Lemma 3.6.
P(Y = k|X = x) is modeled by a so-called logistic function ez

1+ez
.

We motivate an algorithm by using a standard technique from statistics, the maximum
likelihood approach for estimation of the parameters β∗(k), k = 1, ..., K − 1. We will see
later that this approach is equivalent to minimizing an empirical risk.
Let f(x1, y1, ..., xn, yn) denote the joint density of the random variables (Xi, Yi), i =
1, ..., n, fX,Y the density of (X, Y ) (with respect to the product measure of the Lebesgue
and the counting measure), and fX the density of X with respect to the Lebesgue
measure. Then it holds that

log f(x1, y1, ..., xn, yn) =
n∑
i=1

log fX,Y (xi, yi)︸ ︷︷ ︸
=
fX,Y (xi,yi)

fX (xi)
·fX(xi)

=
n∑
i=1

logP(Y = yi|X = xi) +
n∑
i=1

log fX(xi)︸ ︷︷ ︸
unknown, we will omit it!

.

The maximum likelihood approach asks for maximizing this quantity with respect to
β(k), k = 1, ..., K − 1.
Lemma 3.6 ⇒

logP(Y = y|X = x) =
K−1∑
j=1

1{y=j}
{
xTβ(j) − log

(
1 +

K−1∑
k=1

exp(xTβ(k))
)}

−1{y=K} log
(

1 +
K−1∑
k=1

exp(xTβ(k))
)

=
{K−1∑

k=1

1{y=k} · xTβ(k)
}
− log

(
1 +

K−1∑
k=1

exp(xTβ(k))
)

Instead of f(X1, Y1, ..., Xn, Yn) we can therefore minimize

Ln(θ) :=
1

n

n∑
i=1

[
log
(

1 +
K−1∑
k=1

exp(XT
i β

(k))
)
−

K−1∑
k=1

1{Yi=k} ·XT
i β

(k)
]

(7)

with respect to θ = ((β(1))T , ..., (β(K−1))T )T ∈ R(K−1)d.
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Definition 3.7 (Classifier: Logistic regression). Let

θ̂ = ((β̂(1))T , ..., (β̂(K−1))T )T ∈ arg min
θ∈R(K−1)d

Ln(θ).

Let

δ̂LRk (x) =

{
xT β̂(k), k = 1, ..., K − 1,

0, k = K
.

The logistic regression classifier is given by f̂LRn (x) = arg maxk∈{1,...,K} δ̂
LR
k (x).

3.2.1 Theoretical statements

The theoretical investigation of classification problems with more than two classes K is
often laborious. To some extend, the results for K = 2 classes can be generalized to
an arbitrary K classes. Therefore, we restrict ourselves to the investigation of problems
with K = 2 classes. Moreover, we use a different notation for the classes:

Y = {+1,−1} instead of Y = {1, 2}.

This leads to more compact formulas for the classifiers (the main advantage is that we
can express classifiers as sign functions of discriminant functions, see below). Put

∆ = {δβ(x) = xTβ : β ∈ Rd}.

Since 1{Yi=1} = 1
2
(Yi + 1), we have the following expression.

Definition 3.8 (Logistic regression for 2 classes, risk minimization formulation).

L̃(y, s) := log(1 + es)− 1

2
(y + 1)s.

Put

β̂ ∈ arg min
β∈Rd

R̃n(δβ), R̃n(δ) :=
1

n

n∑
i=1

L̃(Yi, δ(Xi)).

Put δ̂LRn (x) = xT β̂. The logistic regression classifier reads

f̂LRn (x) = sign(δ̂LRn (x)), sign(z) :=


1, z > 0,

0, z = 0,

−1, z < 0.
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Contrary to the formulation before, we only have to define one discriminant function
(instead of two). Moreover, we have a simple expression for the classifier in terms of the
discriminant function.
Note that the loss function which is used in the above risk minimization problem is
not the 0-1- loss but a more complicated function. Since the logistic regression classifier
minimizes the risk with respect to L̃, theoretical statements can only proved ’directly’ for
the modified risk R̃(δ) := EL̃(Y, δ(X)). Therefore, our first goal is to show a theoretical
result for the excess Bayes risk with respect to L̃,

R̃(δ̂LRn )− R̃(δ∗). (8)

Afterwards we will think about how an upper bound can be transferred to the excess
Bayes risk

R(f̂LRn )−R(f ∗)

with respect to the 0-1-loss. For the next statements, we use the following important
abbreviation.

Definition 3.9. η(x) = P(Y = 1|X = x).

We now have to convince ourselves that under the model assumption of logistic regression
(Definition 3.5)

log(
η(x)

1− η(x)
) = xTβ∗ für ein β∗ ∈ Rd

the function δβ∗(x) = xTβ∗ is a Bayes rule with respect to the risk R̃ (even if we
minimize over all possible measurable mappings δ : X → R!). Later in the proof of an
upper bound of the excess Bayes risk, we will need also a more specific property of R̃(·),
the so called quadratic margin property.

Lemma 3.10 (Quadratic margin property). Suppose that there exists c > 0 such that
c ≤ η(x) ≤ 1− c for all x ∈ X . Then it holds that

R̃(δβ∗) = min
δ:X→R

R̃(δ).

Suppose that X ∼ N(0,Σ). Then, for all β ∈ Rd with ‖Σ1/2(β−β∗)‖2 ≤ c2 it holds that

R̃(δβ)− R̃(δβ∗) ≥
c2

4
· ‖Σ1/2(β − β∗)‖2

2.
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Remark: The assumption X ∼ N(0,Σ) can be weakened. Here we stick to this assump-
tion since it simplifies the result and its proof significantly.

Proof. Proof of the minimization property: It holds that

E[L̃(Y, δ(X))|X = x] = −η(x)δ(x) + log(1 + exp(δ(x)) = g(δ(x)). (9)

with g(s) = −η(x)s + log(1 + es). It is enough to show that for all x ∈ X it holds that
g(δ(x)) ≥ g(δβ∗(x)) (*). Then, by application of E[·] to (9) we obtain: R(δ) ≥ R(δβ∗).
It holds that

g′(s) = −η(x) +
es

1 + es
, g′′(s) =

es

(1 + es)2
, ‖g′′′‖∞ ≤

1

6
√

3
.

By our model assumption, we have δβ∗(x) = log( η(x)
1−η(x)

), thus

g′(δβ∗(x)) = 0, g′′(δβ∗(x)) = η(x) · (1− η(x)) ≥ c2.

Thus δβ∗(x) is a (local) minimizer of s 7→ g(s). Since it is the only extremal point and
g is continuous, we obtain (*).
Proof of the margin property: A Taylor expansion of g in s = δβ∗(x) yields:

g(s) = g(δβ∗(x)) + (s− δβ∗(x)) · g′(δβ∗(x)) +
1

2
(s− δβ∗(x))2 · g′′(δβ∗(x))

+
1

2
(s− δβ∗(x))2 · [g′′(ξ)− g′′(δβ∗(x)],

where |ξ − δβ∗(x)| ≤ |s− δβ∗(x)|.

Thus,

R̃(δβ)− R̃(δβ∗) ≥
c2

2
E[(δβ(X)− δ∗(X))2]− 1

12
√

3
E[|δβ(X)− δβ∗(X)|3]

=
c2

2
‖Σ1/2(β − β∗)‖2

2 −
1

12
√

3
E[|XT (β − β∗)|3].

For X ∼ N(0,Σ) it holds that

E[|XT (β − β∗)|3] ≤ 33/2E[|XT (β − β∗)|2]3/2 = 33/2‖Σ1/2(β − β∗)‖3
2.

The condition on β in the lemma implies

R̃(δβ)− R̃(δβ∗) ≥
c2

2
‖Σ1/2(β − β∗)‖2

2 −
1

4
‖Σ1/2(β − β∗)‖3

2 ≥
c2

4
‖Σ1/2(β − β∗)‖2

2.
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To obtain an upper bound for the excess Bayes risk, we will need the following tech-
nical lemma (cf. [5], Theorem 14.3 and Theorem 14.4) which contains the so-called
concentration inequalities of Talagrand and Ledoux.

Lemma 3.11. Suppose that L̃ : Y ×R→ R is such that |L̃(y, s)− L̃(y, s′)| ≤ ` · |s− s′|
for all s, s′ ∈ R and y ∈ Y . Suppose that ∆ ⊂ {δ : X → Rmeas.} is a set of functions
and δ∗ ∈ ∆. Then it holds that

E sup
δ∈∆

∣∣∣ 1
n

n∑
i=1

{L̃(Yi, δ(Xi))− L̃(Yi, δ
∗(Xi))− [EL̃(Y1, δ(X1))− EL̃(Y1, δ

∗(X1))]}
∣∣∣

≤ 4` · E sup
δ∈∆

∣∣∣ 1
n

n∑
i=1

εi
{
δ(Xi)− δ∗(Xi)

}∣∣∣,
where εi, i = 1, ..., n are i.i.d. and independent of (Xi, Yi), i = 1, ..., n with distribution
P(ε1 = 1) = P(ε1 = −1) = 1

2
(so-called Rademacher variables).

Caution: From now on, we abbreviate R̃n(β) = R̃n(δβ), R̃(β) = R̃(δβ).
We have the following result for the excess Bayes risk of logistic regression.

Theorem 3.12. Suppose that there exists c ∈ (0, 1) such that c ≤ η(x) ≤ 1− c for all
x ∈ X . Suppose that X ∼ N(0,Σ). Let t ≥ 1. Suppose that ( d

n
)1/2t ≤ c2

128
. Then it

holds that

P(R̃(β̂)− R̃(β∗) ≥ (
32

c
)2t2

d

n
) ≤ 1

t
.

Proof. General remark: In the proof, we introduce some variables γ, a > 0. They are
first arbitrary and are chosen suitable at the end of the proof.

Derivation of a basic inequality: It holds that

R̃n(β̂) ≤ R̃n(β∗),

thus

R̃(β̂)− R̃(β∗) ≤ R̃n(β̂)− R̃n(β∗)− {R̃n(β)− R̃(β)− (R̃n(β∗)− R̃(β∗))}
≤ |R̃n(β̂)− R̃(β̂)− (R̃n(β∗)− R̃(β∗))|. (10)
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Now we use a ’trick’: If T ∈ [0, 1] and β̃ = T β̂ + (1 − T )β∗, then convexity of L̃(y, ·)
implies

R̃n(β̃) ≤ T R̃n(β̂)︸ ︷︷ ︸
≤R̃n(β∗)

+(1− T )R̃n(β∗) ≤ Rn(β∗).

As before, we have

R̃(β̃)− R̃(β∗) ≤ |R̃n(β̃)− R̃(β̃)− (R̃n(β∗)− R̃(β∗))| (11)

For γ > 0, define

T :=
γ

γ + ‖Σ1/2(β̂ − β∗)‖2

.

Then it holds that

β̃ − β∗ = T (β̂ − β∗) ⇒ ‖Σ1/2(β̃ − β∗)‖2 = T‖Σ1/2(β̂ − β∗)‖2 ≤ γ. (12)

From (11) we obtain

R̃(β̃)− R̃(β∗) ≤ sup
β:‖Σ1/2(β−β∗)‖2≤γ

∣∣R̃n(β)− R̃(β)− (R̃n(β∗)− R̃(β∗))
∣∣ =: Zγ. (13)

(The important point in this ’trick’ is the replacement of β̂ by β̃. Now we can bound
the right hand side of the basic inequality with a supremum over a bounded set).

Definition of a ’nice’ event: Let A := {Zγ ≤ γ · a}.
If γ ≤ c2, then we have ‖Σ1/2(β̃ − β∗)‖2 ≤ γ ≤ c2. Lemma 3.10 ⇒

c2

4
‖Σ1/2(β̃ − β∗)‖2

2 ≤ R̃(β̃)− R̃(β∗)
auf A

≤ γ · a

We obtain (note that in the following calculation, ’ !’ is a condition we have to meet at
the end of the proof with our choices of a, γ):

‖Σ1/2(β̃ − β∗)‖2 ≤
2

c
(γa)1/2

!

≤ γ

2
.

From (12) we obtain

γ‖Σ1/2(β̂ − β∗)‖2

γ + ‖Σ1/2(β̂ − β∗)‖2

= ‖Σ1/2(β̃ − β∗)‖2 ≤
γ

2

Umstellen⇒ ‖Σ1/2(β̂ − β∗)‖2 ≤ γ.

Now, we repeat the whole proof with β̂ instead of β̃ (starting from (10) instead of (11)).
Then on A, we have (cf. (13)):

R̃(β̂)− R̃(β∗) ≤ Zγ ≤ γ · a.
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Upper bound for the probability of Ac: It holds that

|L̃(y, s)− L̃(y, s′)| ≤ |1
2

(y + 1)| · |s− s′|+ 1 · |s− s′| ≤ 2|s− s′|,

thus Lemma 3.11 with ` = 2 implies

EZγ ≤ 8 · E sup
‖Σ1/2(β−β∗)‖2≤γ

∣∣∣ 1
n

n∑
i=1

εiX
T
i (β − β∗)

∣∣∣
Σ einfügen + CSU

≤ 8E
[

sup
‖Σ1/2(β−β∗)‖2≤γ

∥∥ 1

n

n∑
i=1

εi(Σ
−1/2Xi)

∥∥
2

∥∥Σ1/2(β − β∗)
∥∥

2

]
Hölder E[|Z|] ≤ E[Z2]1/2

≤ 8γ

n
E
[ ∥∥∥ n∑

i=1

εi(Σ
−1/2Xi)

∥∥∥2

2︸ ︷︷ ︸
=
∑d
j=1(

∑n
i=1 εi(Σ

−1/2Xi)j)2

]1/2

unabh.
=

8γ

n

( d∑
j=1

n∑
i=1

E[εi(Σ
−1/2Xi)

2
j ]︸ ︷︷ ︸

=1

)1/2

= 8γ

√
d√
n
.

Choice of a, γ: Choose a := 8( d
n
)1/2 · t ⇒ P(Ac) ≤ P(Zγ > γ · a)

Markov’s ineq.

≤ 1
t
.

We have to meet the condition 2
c
(γa)1/2 ≤ γ

2
⇒ Choose γ := a · (4

c
)2.

Condition from above: γ ≤ c2 ⇐⇒ ( d
n
)1/2 · t ≤ c4

128
.

Thus we obtain the rate

γ · a = (
4

c
)2 · a2 = (

32

c
)2t2

d

n
.

Logistic regression can also be performed with an additional penalization routine.

Definition 3.13 (Logistic regression with penalization for 2 classes). Put

β̂λ ∈ arg min
β∈Rd

{
R̃n(β) + λ · ‖β‖1

}
.

Define δ̂LRn,λ(x) = xT β̂λ. The logistic regression classifier with penalization is given by

f̂LRn,λ (x) = sign(δ̂LRn,λ(x)).
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We are now able to provide the following theoretic result by combining techniques from
Theorem 2.10 (Lasso) and Theorem 3.12 (Logistic regression without penalization). Put
S(β) := {j ∈ {1, ..., d} : βj 6= 0} and for v ∈ Rd, S ⊂ {1, ..., d}: vS := (vj1{j∈S})j=1,...,d.
Furthermore, set

C := {v ∈ Rd : ‖vS(β∗)c‖1 ≤ 3‖vS(β∗)‖1}, Λmin(Σ) := inf
v∈C

vTΣv

‖vS(β∗)‖2
2

(REC).

Theorem 3.14. Suppose that there exists c ∈ (0, 1) such that c ≤ η(x) ≤ 1− c for all
x ∈ X . Suppose that X ∼ N(0,Σ). Put s = #S(β∗).
Let t ≥ 1. Then for all

λ ≥ 8(
2 log(2d)

n
)1/2‖Σ‖1/2 · t

with the property that (2 log(2d)
n

)1/2‖Σ‖1/2t ≥ 4‖Σ‖1/2
c4

λ2s
Λmin(Σ)

, it holds that

P
(
R̃(β̂n,λ)− R̃(β∗) ≥ 16

c2

λ2s

Λmin(Σ)

)
≤ 1

t
.

Proof. Abbreviate S = S(β∗).
Deduction of the basic inequality: It holds that

R̃n(β̂) + λ‖β̂‖1 ≤ R̃n(β∗) + λ‖β∗‖1,

thus

R̃(β̂)− R̃(β∗) + λ‖β̂‖1 ≤ (R̃n(β̂) + λ‖β̂‖1)− (R̃n(β∗) + λ‖β∗‖1)

−{R̃n(β)− R̃(β)− (R̃n(β∗)− R̃(β∗))}+ λ‖β∗‖1

≤ |R̃n(β̂)− R̃(β̂)− (R̃n(β∗)− R̃(β∗))|+ λ‖β∗‖1. (14)

Again we use the following ’trick’: Let T ∈ [0, 1] and define β̃ = T β̂ + (1− T )β∗. Then
convexity of L̃(y, ·) and ‖ · ‖1 implies

R̃n(β̃) + λ‖β̃‖1 ≤ T (R̃n(β̂) + λ‖β̂‖1︸ ︷︷ ︸
≤R̃n(β∗)+λ‖β∗‖1

) + (1− T )(R̃n(β∗) + λ‖β∗‖1) ≤ Rn(β∗) + λ‖β∗‖1.

As before, we obtain

R̃(β̃)− R̃(β∗) + λ‖β̃‖1 ≤ |R̃n(β̃)− R̃(β̃)− (R̃n(β∗)− R̃(β∗))|+ λ‖β∗‖1 (15)

For γ > 0, define

T :=
γ

γ + ‖β̂ − β∗‖1

.
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It holds that

β̃ − β∗ = T (β̂ − β∗) ⇒ ‖β̃ − β∗‖1 = T‖β̂ − β∗‖1 ≤ γ. (16)

From (15) we get

R̃(β̃)− R̃(β∗)+λ‖β̃‖1 ≤ sup
β:‖β−β∗‖1≤γ

∣∣R̃n(β)− R̃(β)− (R̃n(β∗)− R̃(β∗))
∣∣︸ ︷︷ ︸

=:Zγ

+λ‖β∗‖1. (17)

Definition of a ’nice’ event: Put A := {Zγ ≤ γ · a}.
On A it holds that

R̃(β̃)− R̃(β∗) + λ‖β̃Sc‖1 ≤ γ · a+ λ(‖β∗S‖1 − ‖β̃S‖1) ≤ γ · a+ λ‖(β∗ − β̃)S‖1. (18)

Case 1: 2λ‖(β̃ − β∗)S‖1 ≥ γ · a. Then we have

λ‖(β̃ − β∗)Sc‖1 ≤ R̃(β̃)− R̃(β∗)︸ ︷︷ ︸
0≤

+λ‖β̃Sc‖1 ≤ γ · a+ λ‖(β∗ − β̃)S‖1 ≤ 3λ‖(β∗ − β̃)S‖1.

⇒ β̃ − β∗ ∈ C
If ‖Σ‖1/2γ ≤ c2 (then ‖Σ1/2(β̃ − β∗)‖2 ≤ ‖Σ‖1/2 · ‖β̃ − β∗‖2 ≤ ‖Σ‖1/2 · ‖β̃ − β∗‖1 ≤
‖Σ‖1/2γ ≤ c2, that is, the margin property from Lemma 3.10 can be applied):

R̃(β̃)− R̃(β∗) + λ ‖β̃ − β∗‖1︸ ︷︷ ︸
=‖β̃Sc‖1+‖(β̃−β∗)S‖1

(18)

≤ γ · a+ 2λ‖(β∗ − β̃)S‖1

REP

≤ γ · a+ 2λ
( s

Λmin(Σ)

)1/2

‖Σ1/2(β̃ − β∗)‖2

Lemma 3.10

≤ γ · a+ 2λ
( s

Λmin(Σ)

)1/2

· 2

c

(
R̃(β̃)− R̃(β∗)

)1/2

4xy≤x2+4y2

≤
x= 1√

2
(R̃(β̃)−R̃(β∗))

γ · a+ 4
λ2s

c2Λmin(Σ)
+

1

2

(
R̃(β̃)− R̃(β∗)

)
.

Rearranging terms yields

R̃(β̃)− R̃(β∗) + 2λ‖β̃ − β∗‖1 ≤ 2γ · a+ 8
λ2s

c2Λmin(Σ)
.

Case 2: 2λ‖(β̃ − β∗)S‖1 ≤ γ · a. Dann ist mit (18):

R̃(β̃)− R̃(β∗) + λ · ‖β̃ − β∗‖1 ≤ γ · a+ 2λ‖(β̃ − β∗)S‖1 ≤ 2γ · a.
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End of case distinction.

We conclude that if we choose λ such that

4
λ2s

c2Λmin(Σ)
≤ γ · a,

then on A it holds that

R̃(β̃)− R̃(β∗) + λ · ‖β̃ − β∗‖1 ≤ 4γ · a. (19)

If 4a ≤ λ
2
, then it holds that

‖β̃ − β∗‖1 ≤
γ

2
.

From (16) we get

γ‖β̂ − β∗‖1

γ + ‖β̂ − β∗‖1

= ‖β̃ − β∗‖1 ≤
γ

2

rearranging⇒ ‖β̂ − β∗‖1 ≤ γ.

If we repeat the whole proof for β̂ (now starting from (10) instead of (15)), then we
obtain that on A it holds that (cf. (19)):

R̃(β̂)− R̃(β∗) ≤ 4γ · a.

Upper bound for the probability of Ac: It holds that

|L̃(y, s)− L̃(y, s′)| ≤ |1
2

(y + 1)| · |s− s′|+ 1 · |s− s′| ≤ 2|s− s′|,

thus Lemma 3.11 with ` = 2 implies

EZγ ≤ 8 · E sup
‖β−β∗‖1≤γ

∣∣∣ 1
n

n∑
i=1

εiX
T
i (β − β∗)

∣∣∣
≤ 8E

[
sup

‖β−β∗‖1≤γ

∥∥ 1

n

n∑
i=1

εiXi

∥∥
∞

∥∥β − β∗∥∥
1

]
≤ 8γ

n
E
∥∥∥ n∑
i=1

εiXi

∥∥∥
∞
.

Since X1, ..., Xn ∼ N(0,Σ), it holds that (this is left as an exercise):

E
[

max
j=1,...,d

∣∣∣ n∑
i=1

εiXij

∣∣∣] ≤ √n√2 log(2d) · max
j=1,...,d

Σ
1/2
jj
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We conclude that

EZγ ≤ γ · 8
(2 log(2d)

n

)1/2

‖Σ‖1/2.

Choice of a, γ, λ: Choose a := 8(2 log(2d)
n

)1/2‖Σ‖1/2·t⇒ P(Ac) ≤ P(Zγ > γ·a)
Markov’s ineq.

≤
1
t
.

It has to hold that 4a ≤ λ
2
, that is, λ ≥ 8a (this leads to one condition in the theorem).

It has to hold that 4 λ2s
c2Λmin(Σ)

≤ γa, that is, we should choose γ := 4 λ2s
ac2Λmin(Σ)

.

Condition from above: ‖Σ‖1/2γ ≤ c2 ⇐⇒ 4 λ2s
ac2Λmin(Σ)

≤ c2‖Σ‖−1/2 (this leads to one

condition in the theorem).
The convergence rate then reads

4γ · a =
16

c2

λ2s

Λmin(Σ)
.

Remarks:

• The condition (*) is a bound for the dimensions s, d. For instance, if we choose
the smallest possible λ,

λ = 8(
2 log(2d)

n
)1/2‖Σ‖1/2t,

then (*) reads

(
2 log(2d)

n
)1/2s · t ≤ c4

256

Λmin(Σ)

‖Σ‖
.

and we obtain the convergence rate

16

c2

λ2s

Λmin(Σ)
=

Zahl

c2
· log(d)s

n
· ‖Σ‖

Λmin(Σ)
· t2.

• Note that similar as in the LASSO case, the original dimension d of the space X
only shows up in the convergence rate via the much smaller log(d).

• In both theorems, Theorem 3.12 and Theorem 3.14, much better upper bounds
are available with respect to t. We only used the simple Markov inequality P(Zγ ≥
γa) ≤ EZγ

γa
and obtained a result of the form

P(R̃(β̂)− R̃(β∗) ≥ Rate · t2) ≤ 1

t
.

Using more sophisticated concentration inequalities, one can obtain ≤ e−t. This is
part of the exercises.
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3.3 Calibration condition and risk transfer formula

Up to now, we have investigates classifiers for K = 2 classes which had the form

f̂n(x) = sign(δ̂n(x)), (20)

Here, δ̂n was obtained via a minimization problem

δ̂n :∈ arg min
δ∈∆

R̃n(δ), R̃n(δ) :=
1

n

n∑
i=1

L̃(Yi, δ(Xi))

(or with additional penalization). Mathematically speaking, δ̂n(x) is a discriminant
function for class 1 of the classifier f̂n (and the discriminant function for class −1 is
the constant zero function). Computing δ̂n therefore means to estimating an optimal
discriminant function instead of the Bayes rule f ∗.
We obtained upper bounds for the excess Bayes risk of δ̂n with respect to R̃(δ) :=
EL̃(Y, δ(X)), that is, upper bounds for

R̃(δ̂n)− R̃(δ∗), δ∗ :∈ arg min
δ:X→R

R̃(δ).

Question: Can we derive upper bounds for the excess Bayes risk of f̂n with respect
to the 0-1 loss L(y, s) = 1{y 6=s} from the above upper bounds? That is, can we derive
upper bounds for

R(f̂n)−R(f ∗), f ∗ :∈ arg min
f :X→{−1,+1}

R(f) ?

We are interested to transfer the results to the 0-1 loss of the classifier f̂n since the 0-1
loss is the ’most natural’ loss function for classification: From it, one can directly infer
the expected number of false decisions.

Remark 3.15. The strategy to estimate optimal discriminant functions instead of the
Bayes rule f ∗ and defining (20) afterwards is a common approach in several machine
learning algorithms for classification. Many of these algorithms were originally motivated
by estimation of discriminant functions. However, one could also think of defining a
classifier directly via minimization over the 0-1 loss L(y, s) = 1{y 6=s},

f̂n := arg min
f∈F

R̂n(f), R̂n(f) :=
1

n

n∑
i=1

L(Yi, f(Xi)) (21)

(or with additional penalization). However, L(y, s) is non-convex and non-differentiable
in s, therefore the optimization problem is hard to solve in practice.
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Due to (20) and δ̂n → δ∗, we expect that

f̂n = sign(δ̂n)→ sign(δ∗).

On the other hand, we want that f̂n converges (as a function) towards f ∗. The ap-
proach (20) therefore can only lead to meaningful algorithms if the following condition
is satisfied.

Definition 3.16 (Calibration condition). A loss function L̃ : Y ×R→ R≥0 satisfies the
calibration condition if

f ∗ = sign(δ∗).

To transfer an upper bound of the excess Bayes risk of δ̂n to f̂n, we need the following
abstract condition.

Definition 3.17 (Risk transfer formula). A loss function L̃ : Y × R→ R≥0 produces a
risk transfer formula if there exists a non-decreasing function G : R≥0 → R≥0 such that
for all measurable δ : X → R it holds that

R(sign(δ))−R(sign(δ∗)) ≤ G
(
R̃(δ)− R̃(δ∗)

)
.

Many loss functions L̃ can be written in the special form

L̃(y, s) = φ(−ys), (22)

where φ : R → R≥0 is non-decreasing. This can be motivated as follows: Starting from
the optimization problem in Remark 3.15, it holds for y, s ∈ {+1,−1} that

L(y, s) = 1{y 6=s} = 1{ys≤0} = 1{−ys≥0} ≈ φ(−ys) =: L̃(y, s).

Note that starting from the term 1{−ys≥0} in the above chain of equations, also s ∈ R
(instead of s ∈ {−1,+1} would produce a meaningful ’loss’ in the sense that the loss is 0
if s and y have the same sign. Thus, one can interpret the transition from estimating f ∗ =
sign(δ∗) to estimating δ∗ as a relaxation of the original ’exact’ optimization problem.
Instead of searching for a decision rule f(x) ∈ {−1,+1}, we now allow for all real
numbers δ(x) ∈ R and use a different loss function L̃(y, s).
We now convince ourselves that logistic regression indeed can be implanted into this
framework.
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Lemma 3.18. Let φlog(x) = log(1 + ex). Then for y ∈ {−1,+1}, s ∈ R it holds that

L̃log(y, s) := −1

2
(y + 1)s+ log(1 + es) = φlog(−ys)

That is, the loss function L̃log of logistic regression has the form (22).

Proof. It holds that L̃log(1, s) = −s+log(1+es) = log(1+e−s) = φlog(−s), L̃log(−1, s) =
log(1 + es) = φlog(s).

We now show some general results for loss functions of the form (22). Recall that
η(x) = P(Y = 1|X = x).

Theorem 3.19. Let L̃(y, s) = φ(−ys) with measurable φ : R→ R≥0. For η ∈ [0, 1] let

Φη(z) := φ(−z)η + φ(z)(1− η).

Then δ∗(x) :∈ arg minz∈R Φη(x)(z) is a Bayes rule for the risk R̃(δ) := EL̃(Y, δ(X)).

Proof. It holds that R(δ) = E[E[φ(−Y δ(X))|X]], and

E[φ(−Y δ(X))|X = x] = φ(−δ(x))P(Y = 1|X = x) + φ(δ(x))P(Y = −1|X = x)

= φ(−δ(x))η(x) + φ(δ(x))(1− η(x))

= Φη(x)(δ(x))

≥ Φη(x)(δ
∗(x)) = ... = E[φ(−Y δ∗(X))|X = x].

The tower property of conditional expectations yields the result.

Based on this result, we can verify the calibration condition for logistic regression.

Example 3.20 (Logistic regression). Here, we have φlog(x) = log(1 + ex), and

Φη(z) = log(1 + e−z)η + log(1 + ez)(1− η), 0 = Φ′η(z) = − e−z

1 + e−z
η +

ez

1 + ez
(1− η)

⇒ −η + ez(1− η) = 0 ⇒ z = log( η
1−η ) ⇒ δ∗(x) = log( η(x)

1−η(x)
).

Note that we already have seen a similar calculation in the proof of Theorem 3.10, but
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with an intermediate step using the linear model assumption. The above result was
obtained without any model assumption.
It holds that

δ∗(x) > 0 ⇐⇒ η(x) >
1

2

Thus, f ∗(x) = arg maxk∈{−1,+1} P(Y = k|X = x) = sign(δ∗(x)). This shows that L̃log
satisfies the calibration condition.

We now prove a general result how to obtain risk transfer formulas.

Theorem 3.21. Let L̃(y, s) = φ(−ys) with φ : R → R≥0 be convex and suppose that
φ(0) = 1. Suppose that there exist CH ≥ 0, s ≥ 1, such that for all η ∈ [0, 1] it holds
that ∣∣η − 1

2

∣∣s ≤ Cs
H(1−H(η)), H(η) := min

z∈R
Φη(z), g(η) :∈ arg min

z∈R
Φη(z).

Suppose furthermore that g satisfies g(η) > 0 for η > 1
2
. Then L̃ satisfies the risk transfer

formula with G(r) = 2CHr
1/s.

Proof. Let δ : X → R be measurable, f = sign(δ) : X → {−1,+1}. Then it holds that

R(f) = E[P(Y 6= f(X)|X)] = E[η(X)1{f(X)=−1} + (1− η(X))1{f(X)=1}]

= E[η(X)1{δ(X)<0} + (1− η(X))1{δ(X)>0}].

With f ∗(x) = sign(2η(x)− 1), we obtain that

R(f)−R(f ∗) = E[η(X)1{δ(X)<0} + (1− η(X))1{δ(X)>0}]

−E[η(X)1{η(X)< 1
2
} + (1− η(X))1{η(X)> 1

2
}]

case dist.
= E

[
(2η(X)− 1)1{η(X)> 1

2
,δ(X)<0} + (1− 2η(X))1{η(X)< 1

2
,δ(X)>0}

]
≤ E

[
|2η(X)− 1|1{(2η(X)−1)δ(X)<0}

]
Hölder’s ineq.

≤ 2
(
E
[∣∣η(X)− 1

2

∣∣s1{(2η(X)−1)δ(X)<0}
])1/s

Vorauss.

≤ 2CHE
[
(1−H(η(X)))1{(2η(X)−1)δ(X)<0}

]1/s
.

We now show the following intermediate result: (*) If (2η − 1)p < 0, then 1 ≤ Φη(p). If
this result is shown, we can conclude the result as follows:

R(f)−R(f ∗) ≤ 2CHE
[
Φη(X)(δ(X))− Φη(X)(δ

∗(X))
]1/s

= 2CH
(
R̃(δ)− R̃(δ∗)

)1/s
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To prove (*), we use a case distinction. Note that convexity of φ implies that z 7→ Φη(z)
is convex.

• If η > 1
2
, then g(η) > 1

2
and p < 0.

⇒ 0 ∈ [p, g(η)]. Convexity of Φη(·)⇒ 1 = Φη(0) ≤ max{Φη(p),Φη(g(η))} = Φη(p).

• If η < 1
2
, then p > 0. Based on the symmetry of z 7→ Φη(η) we conclude that

g(η) = −g(1− η) < 0. A similar argument as above yields 1 = Φη(0) ≤ Φη(p).

• If η = 1
2
, then g(η) = −g(1 − η) implies g(η) = 0. Thus 1 = Φη(0) = Φη(g(η)) ≤

Φη(p) for all values of p.

Example 3.22 (Logistic regression). Here, we have φlog(x) = log(1 + ex). Here, we
need a slight modification to make φlog fit into the setting of Theorem 3.21: Define

φ̃log(x) = log(1+ex)
log(2)

. Then we have φ̃log(0) = 1 (note that his does not change the

optimization problem since the objective is just multiplied with a positive factor).

Φη(z) =
1

log(2)
(log(1 + e−z)η + log(1 + ez)(1− η)).

We have already seen that g(η) = log( η
1−η ),

H(η) = Φη(g(η)) = − 1

log(2)

(
log(η)η + log(1− η)(1− η)

)
.

The function p(η) = 1−H(η) satisfies

p′(η) =
1

log(2)
(log(η)−log(1−η)), p′′(η) =

1

log(2)
(
1

η
+

1

1− η
) =

1

log(2)

1

η(1− η)
≥ 1

4 log(2)
.

A Taylor expansion of p(·) around η = 1
2

yields with some intermediate value ξ ∈ (1
2
, η)

that

p(η) =
1

2
(η − 1

2
)2 · p′′(ξ) ≥ 1

8 log(2)
(η − 1

2
)2.

⇒ The condition of Theorem 3.21 is satisfied with s = 2, CH = 2
√

2 log(2).
⇒ The risk transfer formula of logistic regression reads

R(f̂LRn )−R(f ∗) ≤ 4
√

2 log(2)
(
R̃(δ̂LRn )− R̃(δ∗)

)1/2
.
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This result is a little bit unsatisfying: The (upper bound of the) convergence rate of
R̃(δ̂LRn ) − R̃(δ∗) is only transferred with an exponent 1

2
to the rate of R(f̂LRn ) − R(f ∗).

Instead of an upper bound d
n

we therefore only obtain an upper bound for R(f̂LRn )−R(f ∗)
of the form ( d

n
)1/2. Due to the exact calculation in the linear regression model, we are

somehow ’sure’ that the rate of R̃(δ̂LRn ) − R̃(δ∗) cannot be better than d
n
. However for

R(f̂LRn )−R(f ∗) it is not clear if the rate ( d
n
)1/2 could be improved. In [17] it was shown

that even for the 0-1 loss one expects convergence rates of order n−1 under specific
assumptions.
We now present a general result how specific assumptions on η(x) can improve the risk
transfer formula from Theorem 3.21.

Definition 3.23 (Noise condition). There are q ≥ 0, C > 0 such that

∀t > 0 : P
(∣∣η(X)− 1

2

∣∣ ≤ t
)
≤ Ctq.

The extreme case q = ∞ is allowed and should be interpreted as follows: There exists
some c > 0 such that |η(x)− 1

2
| ≥ c for all x ∈ X .

The variable q in the noise condition can be interpreted as a measure how ’often’ η(x)
reaches 1

2
, that is, how often one has to make ’hard’ decisions. Under this condition, the

following improved risk transfer formula holds.

Theorem 3.24. Suppose that the conditions of Theorem 3.21 are met. Additionally,
suppose that the noise condition holds. Then the risk transfer formula is satisfied with

G(r) = 4C
s(q+1)
q+s

H C−
1
q+s · r

q+1
q+s .

In the special case q =∞ we have G(r) = 2
CsH
cs−1 r.

Proof. Starting from the proof of Theorem 3.21, it holds for f = sign(δ), γ ≥ 0 and
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A := {(2η(X)− 1)δ(X) < 0} that

R(f)−R(f ∗) ≤ 2E
[∣∣η(X)− 1

2

∣∣1A]
≤ 2

(
E
[∣∣η(X)− 1

2

∣∣1A1{|η(X)− 1
2
|<γ}
]

+ E
[∣∣η(X)− 1

2

∣∣1A 1{|η(X)− 1
2
|≥γ}︸ ︷︷ ︸

≤1{...}
|η(X)− 1

2 |
s−1

γs−1

])

≤ 2
(
γ · P(|η(X)− 1

2
| < γ) +

1

γs−1
E
[∣∣η(X)− 1

2

∣∣s1A])
as in Thm. 3.21

≤
noise cond.

2
(
Cγq+1 +

1

γs−1
Cs
H(R̃(δ)− R̃(δ∗))︸ ︷︷ ︸

=:B

)
. (23)

Now we choose γ > 0 in such a way that both terms on the right hand side of (23) are
nearly equal in size. This can be obtained by choosing

γ =
(B
C

) 1
q+s
.

Putting this result into (23), we obtain

R(f)−R(f ∗) ≤ 4C−
1
q+sB

q+1
q+s .

In the special case q = ∞, the first summand in (23) does not appear for the choice
γ = c which then yields the result.

Example 3.25 (Logistic regression). To obtain the margin property in Theorem 3.10,
we had to assume that c ≤ η(x) ≤ 1 − c for all x ∈ X . Now we additionally suppose
that |η(x)− 1

2
| ≥ c for all x ∈ X , that is we assume that the noise condition holds with

q =∞. We then obtain the following risk transfer formula for logistic regression:

R(f̂LRn )−R(f ∗) ≤ 16 log(2)

c
·
(
R̃(δ̂LRn )− R̃(δ∗)

)
.

In the situation of Theorem 3.12, we would obtain

P
(
R(f̂LRn )−R(f ∗) ≥ (

32

c
)3t2

d

n

)
≤ 1

t
.

This finishes the discussion of logistic regression.
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3.4 Generalization to nonlinear models

Even though linear models seem of quite limited use in practice, they can be used to
model nonlinear relations between Y and X.

’Trick’: The algorithms are not applied to (X, Y ) but to (X̃, Y ), where

X̃ = h(X), h : X → X̃ ⊂ Rd̃.

Often one then has d̃� d. Additionally, the model assumptions have to be satisfied for
(X̃, Y ) instead of (X, Y ). Accordingly, also the conditions of the theorems have to be
satisfied for (X̃, Y ).

Example 3.26 (Linear regression). The model

Y =
d∑
j=1

a∗jXj +
d∑
j=1

b∗jX
2
j + ε

with a∗, b∗ ∈ Rd corresponds to the model assumption of linear regression with

Y = X̃Tβ∗ + ε, β∗ = (a∗, b∗) ∈ R2d, X̃ = h(X),

h(x) = (x1, ..., xd, x
2
1, ..., x

2
d).

Example 3.27 (Logistic regression). The model

log(
η(x)

1− η(x)
) =

d∑
j=1

a∗jxj +
d∑
j=1

b∗jx
2
j

with a∗, b∗ ∈ Rd corresponds to the model assumption of logistic regression with

log(
η̃(x)

1− η̃(x)
) = x̃Tβ∗, β∗ = (a∗, b∗) ∈ R2d, x̃ = h(x),

h(x) = (x1, ..., xd, x
2
1, ..., x

2
d) and η̃(x) = P(Y = 1|h(X) = h(x)) = η(x).

In the classification example, the linear (optimal) decision boundaries then change to
nonlinear decision boundaries as follows:

Ω1 = {x ∈ X : x̃Tβ∗ ≥ 0} = {x ∈ X : h(x)Tβ∗ ≥ 0}.
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In Example 3.27, this leads to

Ω1 = {x ∈ X :
d∑
j=1

a∗jxj +
d∑
j=1

b∗jx
2
j ≥ 0},

that is, the decision boundaries are of quadratic form (ellipses).

Caution: There are several issues coming with these techniques:

• It is not clear which functions h : X → X̃ ⊂ Rd̃ should be chosen if one wants
to model a more complicated relationship in the data. A more complicated and
diverse h often leads to d̃ � d. A standard choice to overcome this selection
problem is to choose the components of h as bases from Hilbert spaces H ⊂ {f :
X → R}. This is discussed in more detail in the SVM chapter.

• Since one often has d̃ � d, it is necessary to use algorithms with penalization of
β.

• The covariance matrix in the nonlinear formulation reads Σ̃ = E[X̃X̃T ] = E[h(X)h(X)T ].
In many results, the smallest eigenvalues of Σ̃ play an important role. This may
lead to problems: If the functions h are not well-chosen, the eigenvalues of Σ̃ may
be very small even if X itself had nearly independent components. As an example,
consider X ∼ U [0, 1] (1-dimensional uniform distribution on [0, 1]) and

h(x) = (x, x2, ..., xd̃).

Then it holds that

Σ̃jk = E[XjXk] = E[Xj+k] =
1

j + k + 1
, j, k = 1, ..., d̃.

Already for d̃ = 3 it holds that λmin(Σ̃) ≈ 0.0002 since X,X2, X3 are strongly
correlated.

Therefore the choice of h has to be made with care. Often the penalization term has to
be changed and cannot be chosen simply as the 1- or 2-norm of β since then the results
depend too heavily on the properties of Σ̃.

3.5 Exercises

Task 7 (Discussion: Application of the proof technique of Theorem 3.12). In this task
we aim to apply the proof technique of Theorem 3.12 on the LS estimator in the linear
model with deterministic design, that is X1, ..., Xn are considered as deterministic and
Σ̂ = 1

n
XTX = Σ. Moreover, suppose that εi ∼ N(0, σ2).

Recall that β̂ = arg minβ∈Rd R̂n(β) with R̂n(β) = 1
n
‖Y−Xβ‖2

2, R(β) = ‖Σ1/2(β−β∗)‖2
2 +

σ2.
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1. Show that

R(β̂)−R(β∗) ≤
∣∣(R̂n(β̂)−R(β̂))− (R̂n(β∗)−R(β∗))

∣∣.
2. Let γ > 0, T := γ

γ+‖Σ1/2(β̂−β∗)‖2
and β̃ := T β̂ + (1 − T )β∗. Show that ‖Σ1/2(β̃ −

β∗)‖2 ≤ γ and

R(β̃)−R(β∗) ≤ sup
β:‖Σ1/2(β−β∗)‖2≤γ

∣∣(R̂n(β)−R(β))− (R̂n(β∗)−R(β∗))
∣∣ =: Zγ.

3. Let a > 0. Show the following statement: If (aγ)1/2 ≤ γ
2
, then we have on the

event A = {Zγ ≤ a · γ} that

‖Σ1/2(β̂ − β)‖2 ≤ γ.

Conclude that R(β̂)−R(β∗) ≤ a · γ.

4. Conclude that
P(R(β̂)−R(β∗) > a · γ) ≤ P(Ac).

Now, we investigate the choice of a, γ.

(e) Show that

(R̂n(β)−R(β))− (R̂n(β∗)−R(β∗)) = − 2

n
e
TX(β − β∗)

and |Zγ| ≤ 2γ
n
‖eTXΣ−1/2‖2.

Hint: Add Σ−1/2Σ in the above expression and use that |vTw| ≤ ‖v‖2‖w‖2.

(f) Show that E|Zγ| ≤ 2γσ( d
n
)1/2.

(g) Choose a, γ appropriately to obtain the following statement:

P(R(β̂)−R(β∗) ≥ 16σ2 d

n
· t2) ≤ 1

t
.

Now, we aim to find a better upper bound for P(Zγ > aγ).

(h) Show that 1
σ
√
n
‖eTXΣ−1/2‖2

d
= ‖W‖2 with W ∼ N(0, Id×d).

(i) Show that
P(‖W‖2

2 − 2E‖W‖2
2 ≥ t) ≤ e−t/4.

Hint: Compute E‖W‖2
2, shift it to the right hand side of the above inequality and

then apply Markov’s inequality with g(x) = e−x/4. For S ∼ N(0, 1) it holds that
E[exp(S

2

4
)] =
√

2, and one has
√

2e−1/2 ≤ 1.
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(j) Using the upper bound for Zγ from (e), show that with a = σ√
n

√
2d+ t it holds

that
P(Ac) = P(Zγ > aγ) ≤ e−t.

(k) Conclude as in (g) that

P
(
R(β̂)−R(β∗) ≥ 4

σ2

n
· (2d+ t)

)
≤ e−t.

Task 8 (Computation of the expected value in Theorem 3.14). Let εi, i = 1, ..., n be i.i.d.
Rademacher distributed (P(ε1 = 1) = P(ε1 = −1) = 1

2
) and Xi ∼ N(0,Σ), i = 1, ..., n

be i.i.d (independent of εi). We now show that

E
[

max
j=1,...,d

∣∣∣ n∑
i=1

εiXij

∣∣∣] ≤ 2
√
n

√
log(
√

2d) · max
j=1,...,d

Σ
1/2
jj .

1. Define Wj := 1√
nΣ

1/2
jj

∑n
i=1 εiXij. Show that conditionally on εi, i = 1, ..., n, it

holds that
Wj ∼ N(0, 1),

and E
[

maxj=1,...,d

∣∣∣∑n
i=1 εiXij

∣∣∣] ≤ E[maxj=1,...,d |Wj|] ·
√
nmaxj=1,...,d Σ

1/2
jj .

2. The function ψ(x) = exp(x2/4) is convex. Show with Jensen’s inequality that

ψ
(
E[ max

j=1,...,d
|Wj|]

)
≤

d∑
j=1

Eψ(|Wj|).

3. Conclude from (b) that E[maxj=1,...,d |Wj|] ≤ 2
√

log(
√

2d).

Hint: It holds that E[exp(W 2
j /4)] =

√
2.

Task 9 (Discussion: The model assumption of logistic regression). Let X ⊂ Rd, Y =
{+1,−1} (classification problems with 2 classes). Let (X, Y )� λ×µZ , where λ denotes
the Lebesgue measure on X and µZ the counting measure on Y . Let gk denote the
conditional density of X given Y = k, and π1 := P(Y = 1). Recall that η(x) := P(Y =
1|X = x).

1. Derive an expression for the density g(x) of X in terms of π1, gk.
Hint: Use the law of total probability.
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2. Show that

log
( η(x)

1− η(x)

)
= log

( π1

1− π1

)
+ log

( g1(x)

g−1(x)

)
.

Hint: Bayes’ theorem.

Now, let for k ∈ Y

gk(x) =
1

((2π)d det(Σk))1/2
exp

(
− 1

2
(x− µk)TΣ−1

k (x− µk)
)

be the density of a N(µk,Σk) distribution, where µk ∈ Rd, Σk ∈ Rd×d is positive definite.

(c) Derive a simplified expression for log( g1(x)
g−1(x)

).

(d) Show the following statement: If Σ1 = Σ2, π1 = 1
2

and µT1 Σ−1µ1 = µT−1Σ−1µ−1,
then the model has linear optimal decision boundaries and (X, Y ) satisfies the
model assumption of logistic regression.

(e) Provide a simple condition for µ1, µ−1 such that µT1 Σ−1µ1 = µT−1Σ−1µ−1.

(f) Show the following statement: If Σ1 = Σ2, then the model has ’affine’ linear
optimal decision boundaries and (X̃, Y ) with X̃ = (1, X) satisfies the model as-
sumption of logistic regression.

(g) Show that for general Σ1,Σ2, the model has quadratic optimal decision boundaries
and (X̃, Y ) with X̃ = h(X) mit h(x) = (1, (xj)j=1,...,d, (xjxl)1≤j≤l≤d) satisfies the
model assumption of logistic regression.

(h) Which convergence rates do we expect for the logistic regression classifier from
Theorem 3.12 applied to (X̃, Y ) in the cases (d),(f),(g)?

Task 10 (The Bayes risk in classification problems). Let X ⊂ Rd, Y = {+1,−1}
(classification problems with 2 classes). Suppose that the same assumptions as in task
2 are satisfied, in particular that X given Y = k is N(µk,Σ) distributed with density

gk(x) =
1

((2π)d det(Σ))1/2
exp

(
− 1

2
(x− µk)TΣ−1(x− µk)

)
,

where µk ∈ Rd and Σ ∈ Rd×d is positive definite. In this task we derive an expression
for the Bayes risk R(f ∗).

1. Define δ∗(x) := log( η(x)
1−η(x)

). Show that

f ∗ = sign(δ∗),

and derive δ∗(x).
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2. Show that

R(f ∗) = π1P(δ∗(X) < 0|Y = 1) + (1− π1)P(δ∗(X) > 0|Y = −1).

3. Show that conditionally on Y = 1 it holds that δ∗(X) ∼ N(T + 1
2
∆,∆). Show

that conditionally on Y = −1, it holds that δ∗(X) ∼ N(T − 1
2
∆,∆), where

∆ := (µ1−µ−1)TΣ−1(µ1−µ−1) so-called Mahalanobis distance, T := log
( π1

1− π1

)
.

4. Show that

R(f ∗) = π1Φ
(−T − 1

2
∆

√
∆

)
+ (1− π1)

(
1− Φ

(−T + 1
2
∆

√
∆

))
,

where Φ is the distribution function of the standard normal distribution.

5. Show that in the special case π1 = 1
2
, Σ = Id×d, µ−1 = −µ1, we have R(f ∗) =

Φ(−‖µ1‖2).

51



4 Support Vector Machines

4 Support Vector Machines

In this chapter, we consider classification problems with X ⊂ Rd and K = 2 classes Y =
{+1,−1}. The measure the quality of the classifier with the 0-1 loss L(y, s) = 1{y 6=s}.
Goal: Find new methods which yield linear decision boundaries but also allow for better
generalizations to nonlinear decision boundaries.
We first present a very naive approach.

Example 4.1 (Classification with linear regression). Let (Xi, Yi), i = 1, ..., n be training
samples. Naive approach: Apply the LS-estimator to (Xi, Yi) with squared loss L̃(y, s) =
(y − s)2.

β̂ := arg min
β∈Rd

R̃n(β), R̃n(β) =
1

n

n∑
i=1

L̃(Yi, X
T
i β) =

1

n

n∑
i=1

(Yi −XT
i β)2.

Put δ̂naiv
n (x) = xT β̂ and f̂naiv

n (x) = sign(δ̂naiv
n (x)).

Problem: If the training samples Xi corresponding to different classes are linear sepa-
rable (that is, there exists a line or a hyperplane which separates the two point clouds
{Xi : Yi = 1},{Xi : Yi = −1}), then a classifier should yield such a separation. The
reason is that new training samples of class 1 are expected to be ’near’ to observations
which had class 1; therefore a clear separation of the sets {Xi : Yi = 1},{Xi : Yi = −1}
yields a ’safety buffer’ between the two classes. The above naive approach does not yield
such a solution.

4.1 Separating hyperplanes

We first collect some elementary properties of hyperplanes.

Definition 4.2. An (affine) hyperplane with normal vector β ∈ Rd and base β0 ∈ R is

a set {x ∈ Rd : xTβ + β0 = 0}. Let

∆ := {δβ,β0(x) = xTβ + β0 | β ∈ Rd, β ∈ R}

be the set of all hyperplane functions.
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Lemma 4.3. The distance (with sign) of a point x ∈ Rd to an hyperplane δβ,β0 is given
by 1

‖β‖2 (xTβ + β0).

Remark: The sets {x ∈ Rd : δβ,β0(x) < 0} and {x ∈ Rd : δβ,β0(x) > 0} correspond to the
sets of points on both sides of the hyperplane δβ,β0 .
The basic approach is to define a classifier as in the case of logistic regression via

f̂n(x) = sign(δ̂n(x)),

where δ̂n(x) ∈ ∆. This means the problem of finding a classifier boils down to find a
suitable hyperplane. To derive an estimator δ̂n we start with the following assumption:

There exists a hyperplane which separates {Xi : Yi = −1} and {Xi : Yi = +1}.

Such a hyperplane is also called separating hyperplane. Formally, this assumption can
be written as follows:

(A) ∃δβ,β0 ∈ ∆ : Yi = −1⇒ δβ,β0(Xi) ≤ 0 und Yi = +1⇒ δβ,β0(Xi) ≥ 0

Approach (motivated graphically): Find a hyperplane which separates the point
clouds corresponding to different classes such that on both sides of the hyperplane, there
is still a large distance towards the elements of the point clouds. In the special case of
d = 2, this can be visualized as follows: Find a street between the two point clouds
which is as broad as possible. The middle of this street then is the hyperplane we are
searching for.

Statistical justification for this approach: New points of class ’-1’ are located closely
to the points which were already observed. The larger the distance of {Xi : Yi = −1}
towards the hyperplane, the more probable it is that new points of class ’-1’ lie on the
right side of the hyperplane and are therefore classified correctly through f̂n.

Observation: Each hyperplane δβ,β0 from (A) satisfies the following: If Yi is classified
correctly by f(x) = sign(δβ,β0(x)), then it holds that

Yi · δβ,β0(x) > 0.

Derivation of the separating hyperplane:

• Step 1: For each i ∈ {1, ..., n} let mi := Yi · 1
‖β‖2 (XT

i β + β0) be the distance of Xi

towards the hyperplane δβ,β0 . Let

M := inf
i=1,...,n

mi

be the minimal distance of all observations towards the hyperplane (note that
M < 0 implies that δβ,β0 misclassifies points)
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• Step 2: The goal is to find δβ,β0 such that M is as large as possible, that is, we
aim to solve the following optimization problem

max
β,β0

M s.t. ∀i = 1, ..., n : Yi ·
1

‖β‖2

(XT
i β + β0) = mi ≥M.

⇐⇒ Yi(X
T
i β + β0) ≥M‖β‖2.

• Step 3: (β, β0) is not uniquely determined! Each (c · β, c · β0) with c > 0 is also
a solution if (β, β0) is a solution. We therefore have to eliminate one degree of
freedom. Let c be chosen such that ‖β‖2 = 1/M (*). Then the above optimization
problem is equivalent to

min
β,β0

1

2
‖β‖2

2 s.t. ∀i = 1, ..., n : Yi(X
T
i β + β0) ≥ 1.

Definition 4.4 (Optimal separating hyperplane). Let β̂, β̂0 be solutions of

min
β∈Rd,β0∈R

1

2
‖β‖2

2 s.t. ∀i = 1, ..., n : Yi(X
T
i β + β0) ≥ 1, (24)

then δ̂OSHn := δβ̂,β̂0
is called optimal separating hyperplane and f̂OSHn (x) := sign(δ̂OSHn (x))

is the corresponding classifier.

Caution: Starting from the substitution (*) above (which assumes M ≥ 0), the problem
has no longer a solution if (A) is violated. Graphically, the set

{x ∈ Rd : δβ̂,β̂0
(x) ∈ [−1, 1]}

is the ’street’ which separates the point clouds {Xi : Yi = −1} and {Xi : Yi = +1}.
Accordingly, {x ∈ Rd : δβ̂,β̂0

(x) = ±1} is the roadside and {x ∈ Rd : δβ̂,β̂0
(x) = 0} is the

middle of the street.

4.2 Support vector machines (SVM)

We now solve the issue that Definition 4.4 has no solution of (A) is violated.

Idea: We allow for misclassified points by introducing a tolerance parameter ξi for each
point (the so-called ’slack variables’). Additionally, we minimize the sum of these slack
variables to obtain solutions which only make use of few misclassifications. To do so, we
change the constraint to

Yi(X
T
i β + β0) ≥ 1− ξi
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with ξi ≥ 0,
∑n

i=1 ξi ≤ D. Here, D > 0 is a limit specified by the user which should
be proportional to the number and strength of the misclassifications allowed. Note that
ξi > 1 corresponds to a misclassification.

New optimization problem:

min
β,β0,ξ

1

2
‖β‖2

2 s.t. ∀i = 1, ..., n : Yi(X
T
i β + β0) ≥ 1− ξi,

ξi ≥ 0,
n∑
i=1

ξi ≤ D.

As we have seen in the chapter 2 about linear regression (ridge and LASSO estimator),
we can find an equivalent formulation of the above optimization problem which replaces
the constraint

∑n
i=1 ξi ≤ D by an additive term. This leads to the following definition.

Definition 4.5 (SVM classifier). Let C > 0. Let β̂C , β̂0,C , ξ̂ be solutions of

min
β∈Rd,β0∈R,ξ∈Rn

1

2
‖β‖2

2 + C
n∑
i=1

ξi s.t. ∀i = 1, ..., n : Yi(X
T
i β + β0) ≥ 1− ξi,

ξi ≥ 0.

Define δ̂SVMn,C (x) = δβ̂C ,β̂0,C
(x). The algorithm f̂SVMn,C (x) := sign(δ̂SVMn,C (x)) is called SVM

classifier.

Remark 4.6. As it was the case for the optimal separating hyperplane, {x ∈ Rd :
δ̂SVMn,C (x) ∈ [−1, 1]} can be thought of the ’street’ which is put between the point clouds
by the SVM algorithm. According to the meaning of ξi, we have to distinct between
three cases for each Xi:

• ξi = 0: Xi is classified correctly and lies outside of the street or on the roadside,

• ξi ∈ (0, 1]: Xi is classified correctly but lies ’on’ the street,

• ξi > 1: Xi is misclassified.

Remark: The condition
∑n

i=1 ξi ≤ D is a rather strong and unsatisfying constraint since
it introduces a maximal limit for the number of misclassifications. If D is too small, there
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may not exist a solution. instead, the additive formulation with penalization C
∑n

i=1 ξi
always has a solution.

4.3 Dual formulation of the SVM

In this chapter we reformulate the optimization problem from Definition 4.5. The new
representation allows for a deeper insight, justifies the name SVM and also is the starting
point for a generalization to nonlinear decision boundaries.
In the following theorem from convex analysis, inequalities which include vectors should
be understood component-wise!

Theorem 4.7. Let F : Rr → R, G : Rr → Rk be convex and continuously differentiable.
Suppose that there exists θ ∈ Rr such that G(θ) < 0 (the so-called Slater condition).
We consider the optimization problem

min
θ∈Rr

F (θ) s.t. G(θ) ≤ 0. (25)

The mapping
L(θ, p) := F (θ) + pTG(θ)

is called the corresponding Lagrange function. Then the following statement holds:
θ̂ ∈ Rr is a solution of (25) if there exists some p̂ ∈ Rk

≥0 such that the optimality
conditions

0 = ∇θL(θ̂, p̂), G(θ̂)T p̂ = 0, p̂ ≥ 0, Ĝ(θ̂) ≤ 0 (26)

are satisfied. In this case, (θ̂, p̂) is also a solution of the so-called Wolfe dual

sup
p∈Rk≥0,θ∈Rr

L(θ, p) s.t. ∇θL(θ, p) = 0. (27)

Starting from the formulation in Definition 4.5, we define for θ = (β, β0, ξ):

F (θ) =
1

2
‖β‖2

2 + C
n∑
i=1

ξi, G(θ) =

((
1− ξi − Yi(XT

i β + β0)
)
i=1,...,n

−ξ

)
.

The corresponding Lagrange function (with p = (α, γ) ∈ R2n
≥0) is given by

L(θ, p) = F (θ) +
n∑
i=1

αi
(
1− ξi − Yi(XT

i β + β0)
)
−

n∑
i=1

γiξi.

One can show (this is left as an exercise), that the Wolfe dual (27) for the SVM opti-
mization problem from Definition (4.5) is only an optimization problem with respect to
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α ∈ Rn. With Y := (Y1, ..., Yn)T , 1 := (1, ..., 1)T and Q = (Qij)i,j=1,...,n defined via

Qij := YiYjX
T
i Xj,

the Wolfe dual reads

sup
α∈Rn

{1

2
αTQα− 1Tα

}
s.t. YTα = 0, 0 ≤ α ≤ C.

Based on the optimality conditions (26), we can infer a solution of the original solution
from the Wolfe dual solution. From (26) we obtain

β̂C =
n∑
i=1

α̂iYiXi, β̂0,C = Yi −XT
i β̂C with some i with 0 < α̂i < C.

This leads to the following theorem.

Theorem 4.8 (SVM classifier, dual formulation). Let C > 0. Let α̂ = (α̂1, ..., α̂n)T be
a solution of

min
α∈Rn

{1

2
αTQα− 1Tα

}
s.t. YTα = 0, 0 ≤ α ≤ C.

Then the following holds: β̂C =
∑n

i=1 α̂iYi ·Xi and β̂0,C = Yi−XT
i β̂C , where i ∈ {1, ..., n}

is chosen such that 0 < α̂i < C.

Remark: We see that β̂C is a linear combination of vectors Xi which correspond to
α̂i 6= 0. The optimality conditions (26) imply:

• α̂i = 0 ⇒ ξ̂i = 0, δβ̂C ,β̂0,C
(Xi) ≥ 1 (Xi is classified correctly and is not located on

the street)

• α̂i ∈ (0, C) ⇒ ξ̂i = 0, δβ̂C ,β̂0,C
(Xi) = 1 (Xi is classified correctly and is on the

roadside of the street)

• α̂i = C ⇒ ξ̂i 6= 0, δβ̂C ,β̂0,C
(Xi) ≥ 1− ξi (Xi is either classified correctly or misclas-

sified and is located either on the street or on the wrong side of the street).

Note the following important property: α̂i 6= 0 does not holds for all i ∈ {1, ..., n} but
only for a small part of the training samples Xi. More precisely, α̂i 6= 0 only holds for
those points Xi which have an influence on the form and location of the street. The
equation β̂C =

∑n
i=1 α̂iYi ·Xi can be interpreted in the way that the street itself is only

determined by those points with α̂i 6= 0 (which are those nearest to points of the other
class). These points ’support’ the street because of their location, thus they are also
called support vectors and the whole algorithm support vector machine (SVM).
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4.4 Generalized SVM

Problem: Up to now, the SVM only allows for linear decision boundaries since

δ̂SVMn,C ∈ ∆ = {δβ,β0(x) = βTx+ β0 | β ∈ Rd, β0 ∈ R}.

Solution: We apply the approach from Section 3.4: The original linear SVM algorithm
is applied to transformed data points

X̃ = h(X) with h : X ⊂ Rd → X̃ ⊂ Rd̃.

This leads to the following algorithm: Define Q̃ = (Q̃ij)i,j=1,...,n via

Q̃ij = yiyjh(Xi)
Th(Xj),

and put

Definition 4.9 (SVM classifier, dual nonlinear formulation). Let C > 0. Let α̂ =
(α̂1, ..., α̂n)T be a solution of

min
α∈Rn

{1

2
αT Q̃α− 1Tα

}
s.t. YTα = 0, 0 ≤ α ≤ C.

Put β̂nlC =
∑n

i=1 α̂iYi · h(Xi), and with some i∗ ∈ {1, ..., n} with 0 < α̂i∗ < C: β̂nl0,C :=

Yi∗ − h(Xi∗)
T β̂C . Put

δ̂SVM,nl
n,C (x) = δβ̂nlC ,β̂nl0,C

(h(x)), f̂SVM,nl
n,C (x) = sign(δ̂SVM,nl

n,C (x)).

Important observation: Contrary to logistic regression, the transformed training
samples X̃i = h(Xi) must not be calculated to apply the classifier. It is enough to know
the values

K(x, x′) := h(x)Th(x′)

for each x, x′ ∈ X . We now show this in more detail. Note that Q̃ij = yiyjK(Xi, Xj),
and

δ̂SVM,nl
n,C (x) = (β̂nlC )Th(x) + β̂nl0,C

=
n∑
i=1

α̂iYi · h(Xi)
Th(x) + {Yi∗ −

n∑
i=1

α̂iYih(Xi)
Th(Xi∗)}

=
n∑
i=1

α̂iYi ·K(Xi, x) +
{
Yi∗ −

n∑
i=1

α̂iYiK(Xi, Xi∗)
}
.

58



4 Support Vector Machines

That is, all quantities which include h(Xi) are removed. We obtain the following, so-
called ’kernel-based’ SVM algorithm (the terminology of a kernel is introduced below).

Theorem 4.10 (SVM classifier, dual formulation with kernel K). Let K(x, x′) =

h(x)Th(x′) with some h : X → Rd̃. Let C > 0. Let α̂ = (α̂1, ..., α̂n)T be a solution
of

min
α∈Rn

{1

2
αT Q̃α− 1Tα

}
s.t. YTα = 0, 0 ≤ α ≤ C.

Let i∗ ∈ {1, ..., n} be such that 0 < α̂i∗ < C. Then it holds that

δ̂SVM,nl
n,C (x) =

n∑
i=1

α̂iYi ·K(Xi, x) +
{
Yi∗ −

n∑
i=1

α̂iYiK(Xi, Xi∗)
}
.

The fact that h(Xi) does not occur in the above formulas frees us from the problem to
compute the (possibly large) vectors X̃i = h(Xi) before applying the SVM algorithm.
Moreover, the introduction of the function K allows us to formulate a more abstract
version of the algorithm. Note that we can interprete the SVM algorithm with a function

K : X × X → R

in two ways:

• 1) The SVM algorithm is applied in the original space X ⊂ Rd but with a new scalar
product K(x, x′) instead of the standard scalar product xTx′. The nonlinearity
introduced by h can be interpreted as a change of the scalar product.

• 2) The observations are embedded in a high-dimensional space X̃ ⊂ Rd̃ via the
nonlinear h and the SVM is applied in this high-dimensional space with the stan-
dard scalar product.

K is called kernel function or kernel. In the following we will assume that K is a Mercer
kernel. A Mercer kernel summarizes all properties which are needed to interprete K as
a scalar product.

Definition 4.11 (Mercer kernel). A mapping K : X × X → R is called Mercer kernel
on X if the following properties hold:

(i) K is continuous
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(ii) K is symmetric, that is,

∀x, x′ ∈ Rd : K(x, x′) = K(x′, x)

(iii) K is positive semidefinite, that is,

∀n ∈ N : ∀x(1), ..., x(n) ∈ Rd :
(
K(x(i), x(j))

)
i,j=1,...,n

is positive semidefinite.

There exist several Mercer kernels which are often used in practice:

Example 4.12. (i) linear kernel: K(x, x′) = xTx′,

(ii) polynomial kernel of degree p ∈ N:

Kp(x, x
′) = (1 + xTx′)d

(iii) radial basis functions (Gaussian kernel) with descent γ > 0:

Kγ(x, x
′) = exp(−γ · ‖x− x′‖2

2)

By using kernels, we loose the graphical interpretation which nonlinear transformations
h of the original observations were considered. However, this can be deduced from the
kernels. For the polynomial kernel, we have the following result.

Example 4.13. For d = p = 2, it holds that

Kp(x, x
′) = h(x)Th(x′)

with h : Rd → Rd̃, d̃ = 6 and

h(x) = (1,
√

2x1,
√

2x2, x
2
1, x

2
2,
√

2x1x2)T .

We now present a more general result which shows that every Mercer kernel allows for
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such a representation. Define

L2(X ) := {f : X → R measurable, ‖f‖L2(X ) :=

∫
X
f 2(x) dλ(x) <∞},

`2 := {a = (ak)k∈N : ‖a‖`2 :=
∞∑
k=1

a2
k <∞}.

Then we have the following representation theorem.

Theorem 4.14 (Mercer’s Theorem). Let K : Rd × Rd → R be a Mercer kernel and
X ⊂ Rd be compact. Then there exists an orthonormal basis h̃k ∈ L2(X ) and λk ≥ 0
(k ∈ N) with

K(x, x′) =
∞∑
k=1

λkh̃k(x)h̃k(x
′) x, x′ ∈ X .

The function
h(·) := (

√
λk · h̃k(·))k∈N : X → `2

is called feature map, is well-defined, continuous and satisfies

K(x, x′) = h(x)Th(x′), x, x′ ∈ X . (28)

That is, each Mercer kernel allows (in principle) for a representation of the form (28).

4.5 The SVM algorithm as a minimizer of an empirical risk

From Theorem 4.10 we obtain the following result: A solution of the SVM optimization
problem has the form

δ̂SVM,nl
n,C =

n∑
i=1

aiK(Xi, x) + b

with ai, b ∈ R (i = 1, ..., n). We want to represent δ̂SVM,nl
n,C as a minimizer of an empirical

risk to prove statistical results. To do so, we have to define the space of functions in
which δ̂SVM,nl

n,C lies.

Definition 4.15 (RKHS). Let K : X × X → R be a Mercer kernel. Let Kx := K(x, ·)
and

H0 := Lin(Kx : x ∈ X )

=
{
ga,y(x) =

m∑
i=1

ai ·K(x, y(i)) : y(1), ..., y(m) ∈ X , a1, ..., am ∈ R,m ∈ N
}
.
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For ga,y, gb,z ∈ H0, define the scalar product

〈ga,y, gb,z〉K :=
n∑
i=1

m∑
j=1

aibjK(y(i), z(j)),

The closure of (H0, 〈·, ·〉K) is denoted by (HK , 〈·, ·〉K) and is called Reproducing kernel
Hilbert space (RKHS) of K. The corresponding norm is denoted by ‖g‖K :=

√
〈g, g〉K .

Definition 4.16. Hb
K := {δ + β0 : δ ∈ HK , β0 ∈ R}.

Note that we have always
δ̂SVM,nl
n,C ∈ Hb

K .

Theorem 4.17. (HK , 〈·, ·〉K) has the so-called reproducing property :

∀g ∈ HK : g = 〈g,Kx〉K .

For h being the function from Theorem 4.14, we can find for each g ∈ HK a β ∈ `2 such
that

g = βTh.

Then, the following isometry property holds:

‖g‖2
K = ‖β‖2

`2

We now deduce that δ̂SVM,nl
n,C is indeed a minimizer of an empirical risk with respect to

functions of Hb
K . To do so, we start from the original definition 4.5 of the SVM but with

nonlinear modified observations h(Xi).

• Step 1: Let h : X → `2 be the feature map from Theorem 4.14. Then the original
definition of the SVM algorithm with modified observations h(Xi) and β ∈ `2 reads

min
β∈`2,β0∈R,ξ∈Rn

1

2
‖β‖2

2 + C

n∑
i=1

ξi s.t. ∀i = 1, ..., n : Yi(β
Th(Xi) + β0) ≥ 1− ξi,

ξi ≥ 0, (29)

62



4 Support Vector Machines

and the classifier is given by

f̂n,C(x) = sign(δ̂n,C(x)), δ̂n,C(x) = β̂TCh(x) + β̂0,C

• Step 2: Due to HK = {g = βTh : β ∈ `2} and ‖β‖2
2 = ‖g‖2

K , (29) is equivalent to

min
g∈HK ,β0∈R,ξ∈Rn

1

2
‖g‖2

K + C
n∑
i=1

ξi s.t. ∀i = 1, ..., n : Yi(g(Xi) + β0) ≥ 1− ξi,

ξi ≥ 0 (30)

and
δ̂n,C(x) = ĝ(x) + β̂0,C .

• Step 3: We now simplify the minimization problem by using the constraints. For
fixed g ∈ HK , β0 ∈ R, the optimization problem can be solved with respect to
ξ1, ..., ξn: The objective 1

2
‖g‖2

K + C
∑n

i=1 ξi is minimal if

ξ̂i(g, β0) =

{
0, Yi(g(Xi) + β0) ≥ 1,

1− Yi(g(Xi) + β0), Yi(g(Xi) + β0) < 1
=
(
1− Yi(g(Xi) + β0)

)+
,

where a+ := max{a, 0}.
Plugging in (30) and using the definition λ := 1

2nC
, we obtain that (30) is equivalent

to

min
g∈HK ,β0∈R

1

n

n∑
i=1

(
1− Yi(g(Xi) + β0)

)+
+ λ‖g‖2

K ,

and
δ̂n,C(x) = ĝ(x) + β̂0,C .

Thus, we obtain a third formulation of the SVM algorithm which is now accessible to
statistical theory.

Definition 4.18 (SVM, risk minimization formulation). Let λ > 0. Let L̃(y, s) :=
(1− y · s)+ (the so-called hinge loss, a+ := max{a, 0}), and

δ̂n :∈ arg min
δ∈HbK

{
R̃n(δ) + λ · ‖δ‖2

K

}
, R̃n(δ) =

1

n

n∑
i=1

L̃(Yi, δ(Xi)). (31)

Put f̂n(x) = sign(δ̂n(x)).
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We obtain the following theorem as a connection between the original formulation of the
SVM and the risk minimization formulation.

Theorem 4.19. If λ = 1
2nC

, then δ̂n = δ̂SVM,nl
n,C , where δ̂SVM,nl

n,C is from Definition 4.9 or
Theorem 4.10, respectively.

Proof. We have seen that δ̂n from Definition 4.18 is a solution of Definition 4.5 with
observations h(Xi) replaced by Xi. Theorem 4.8 applied to h(Xi) instead of Xi yields
that this is equivalent to the optimization problem from Definition 4.9 or Theorem 4.10,
respectively.

The SVM therefore tries to approximate δ∗ with functions from Hb
K .

4.6 Theoretical statements

Using Theorem 3.19 and Theorem 3.21, one can show (this is left as an exercise) that the
hinge loss L̃(y, s) := (1− y · s)+ satisfies the calibration condition and the risk transfer
formula. To formulate the results, let

δ∗ ∈ arg min
δ:X→R

R̃(δ), R̃(δ) = EL̃(Y, δ(X)),

and f ∗ ∈ arg minf :X→Y R(f), where R(f) = EL(Y, f(X)). Recall that η(x) = P(Y =
1|X = x).

Lemma 4.20. On {x ∈ X : η(x) 6= 1
2
} we have PX-a.s. δ∗ = f ∗. Then the risk transfer

formula holds with G(r) = r, that is, for measurable δ : X → R it holds that

R(sign(δ))−R(f ∗) ≤ R̃(δ)− R̃(δ∗).

Caution: Contrary to the algorithms considered before we can not simply assume that
δ∗ ∈ Hb

K , that is, we can not set the approximation error to 0. The reason is that the
elements of Hb

K are (in general) continuous while δ∗ is not. A theoretical statement
therefore also has to contain the approximation error.
We need another definition, the so-called integral operator associated to a kernel. Let

L2(PX) := {δ : X → R,E[δ(X)2] =

∫
δ(x)2dPX(x) <∞}.
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The following theorem is stated without proof (functional analysis). The quantities γk
occurring therein are used to formulate the theoretical result about the excess Bayes risk
of the SVM.

Definition 4.21 (Integral operator: Definition and theorem). Let K be Mercer kernel.
The integral operator associated to K and the distribution PX is defined via

TK : L2(PX)→ L2(PX), (TKg)(x) := E[K(X, x)g(X)].

TK is symmetric positive semidefinite and thus diagonalizable. Let γ1 ≥ γ2 ≥ γ3 ≥ ... ≥
0 denote the ordered eigenvalues. It holds that

∑∞
k=1 γk <∞.

The operator TK can be interpreted as the covariance matrix Σh = E[h(X)h(X)T ] of
the transformed observations h(X) (with h from Theorem 4.14, K(x, x′) = h(x)Th(x′)),
Heuristically, one can easily see that γk are the eigenvalues of Σh: If v is an eigenvector of
Σh (and thus also from ΣT

h ) corresponding to eigenvalue λ, then g(x) = vTh(x) satisfies

(TKg)(x) = E[K(X, x)g(X)] = E[h(X)Th(x)vTh(X)] = vTE[h(X)h(X)T ]h(x)

= vTΣhh(x) = λvTh(x) = λg(x),

that is, TK has eigenvalue λ. This interpretation is used below.
The following theoretical result is taken from [1], Theorem 3.1 therein. The statement
is formulated for the empirical risk minimizer from (31) but in a little bit simpler case
where the minimum is taken with respect to the space HK instead of the space Hb

K .

Theorem 4.22. Let X ⊂ Rd be compact. Let K be a Mercer kernel with
supx∈X K(x, x) ≤ 1. Suppose that there exist η0, η1 > 0 such that

∀x ∈ X :
∣∣η(x)− 1

2

∣∣ ≥ η0, η1 ≤ η(x) ≤ 1− η1. (32)

Let

γ(n) :=
1√
n

inf
a∈N

{ a√
n

+ η1

√∑
j>a

γj
}
.

Then there exist universal constants c1, c2 > 0 such that the following holds: For each
t > 0 and

λ ≥ c1

η1

{
γ(n) +

log(log(n) + 1) + t

n

}
(33)

it holds that

P
(
R̃(δ̂n)− R̃(δ∗) ≥ 2 inf

δ∈HK

{
R̃(δ)− R̃(δ∗) + 5λ‖δ‖2

K

}
+ c2λ(1 +

η1

η0

)
)
≤ e−t. (34)
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Remarks:

• The basic assertion of the theorem is that R̃(δ̂n)− R̃(δ∗) behaves nearly (factor 2)
as good as the optimal minimizer over HK

2 inf
δ∈HK

{
R̃(δ)− R̃(δ∗) + 5λ‖δ‖2

K

}
, (35)

but with some additional penalty term 5λ‖δ‖2
K included. The other terms c2λ(1 +

η1

η0
) have not such a big influence on the rate since they stem mainly from the

proof technique. A more detailed analysis of the approximation qualities of HK

can then be used to upper bound (35) to obtain a convergence rate which includes
d, n. This was for instance done in [15], Theorem 2.7 under additional assumptions
and using the Gaussian kernel. Here, we will not investigate these results in detail.

• Inequalities of the form (34) are called oracle inequalities : They connect the quality
of δ̂n with the quality of the optimizer over the function set considered (here HK)
who knows the distribution and the risk function. The underlying dimensionality
of the problem and the number of observations enter the convergence rate via λ
and its corresponding lower bound given in (33).

• The assumption on the behavior of η(x) near 1
2

in (32) corresponds to the noise
condition with q = ∞. In principle, this assumption can be relaxed to the noise
condition with some q > 0. However, then the proof becomes a little bit more
technical.

We want to get a feeling which convergence rates can be achieved using the SVM clas-
sifier. We will do this by using the simple (but often wrong) assumption that δ∗ ∈ HK .
Then, (34) would yield

P
(
R̃(δ̂n)− R̃(δ∗) ≥ 10λ‖δ∗‖2

K + c2λ(1 +
η1

η0

)
)
≤ e−t.

Thus, the rate of R̃(δ̂n) − R̃(δ∗) is mainly determined by λ‖δ∗‖2
K . Depending on the

complexity of δ∗, ‖δ∗‖2
K can be quite large (we will see in the proofs that in principle,

‖δ∗‖K can be in the worst case of size n). The reason is that a complex δ∗ needs a lot of
non-zero coefficients β in the representation δ∗ = βTh to be well approximated (recall
that ‖δ∗‖2

K = ‖β‖2
`2). Thus, ‖δ∗‖2

K should not be viewed as independent of d, n, but here
we will for simplicity assume exactly this and only investigate the rate through λ. The
term λ itself is dominated by γ(n).

Example 4.23. We now investigate some special cases of the sequence γj:

66



4 Support Vector Machines

• If γ1 > 0 but γj = 0 for all j ≥ 2, then it holds that

γ(n)
a=1
=

1

n
,

that is, the condition λ ≥ c1
η1

(γ(n) + log(log(n)+1)+t
n

is independent of the input
dimension d.
The assumption made for γj means that Σh only has one eigenvector v ∈ Rd̃ with
the property Var(vTh(X)) > 0 (all other eigenvector satisfy Var(vTh(X)) = 0),
that is, all values of h(X) are located on a line. In this case, the kernel was chosen
very suitable for the problem and the underlying distribution PX . Of course one
cannot expect such a good behavior in practice because one typically uses ’standard
kernels’ (like the Gaussian kernel) which are not adapted to the problem, and
furthermore the distribution PX is unknown. For the situation above, one would
obtain

λ ≈ C(
1

n
+

log log(n)

n
)

with some constant C > 0.

• If instead γj = 0 for j ≥ k (k ∈ N fixed), then we have

γ(n)
a=k
=

k

n
.

In this case, h(X) lies in a k-dimensional subspace. For the situation above, one
would obtain

λ ≈ C(
k

n
+

log log(n)

n
)

with some constant C > 0.

• In general, the variation of h(X) is much more complex and it typically holds that
γj > 0 for all j ∈ N. Then, the variation of h(X) can be measured via the decay
rate of γj. For instance, if γj = γ1 · ρj with some ρ ∈ (0, 1), then we have with

a = − log(nγ1)
log(ρ)

γ(n) ≤ 1√
n

(
− log(nγ1)√

n log(ρ)
+ η1

1√
n

)
≤ c · log(n) + log(γ1)

n
.

The rate of λ therefore is now given by log(n)
n

(and additionally may depend on
d through γ1, ρ). Slower decay rates of γj = γ1j

−α (α > 1) produce even slower
convergence rates for λ (this is left as an exercise).
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To prove Theorem 4.22, we need some preparation. We start with a margin property
similar as in Lemma 3.10 (for logistic regression). The margin property relates R̃(δ) −
R̃(δ∗) to a more simple distance measure D(δ, δ0) := E[(δ(X) − δ0(X))2]1/2. In the
proofs, mainly this more simple distance measure is used.

Lemma 4.24 (Quadratic margin property of the SVM loss). Let ρ ≥ 0.

1. Suppose (32) (noise condition). Then for each measurable δ : X → R with ‖δ‖∞ ≤
ρ, it holds that

D(δ, δ∗)2 ≤ cρ
{
R̃(δ)− R̃(δ∗)

}
,

where cρ := 2( ρ
η1

+ 1
η0

).

2. Suppose that K(x, x) ≤ 1. Then for each δ ∈ HK , it holds that ‖δ‖∞ ≤ ‖δ‖K . In
particular, we have

‖δ‖K ≤ ρ ⇒ ‖δ‖∞ ≤ ρ.

Proof. 1. Fix x ∈ X . Without loss of generality, suppose that η(x) > 1
2

(⇒ δ∗(x) =
1). Then we have

A(x) :=
(δ(x)− δ∗(x))2

E[L̃(Y, δ(X))− L̃(Y, δ∗(X))|X = x]

=
(δ − 1)2

η(1− δ)+ + (1− η)(1 + δ)+ − 2(1− η)
,

where in the last step, we introduced the abbreviations δ = δ(x), η = η(x). It
is now enough to show that A(x) ≤ cρ (then the assertion follows by applying
another expectation with respect to X). For η > 1

2
> η1, we have

A(x) =


(1−δ)2

η(1−δ)−2(1−η)
, δ ≤ −1,

δ−1
1−η , δ ≥ 1,
1−δ

2η−1
, δ ∈ [−1, 1]

(∗)
≤


4‖δ‖∞ + 2

η0
, δ ≤ −1,

‖δ‖∞
η1

, δ ≥ 1,
1
η0
, δ ∈ [−1, 1]

≤ 2
(‖δ‖∞

η1

+
1

η0

)
.

The upper bound provided in (*) is due to an elementary calculation: Put z :=
−δ − 1 ∈ [0, ‖δ‖∞ − 1]. Then we have

(1− δ)2

η(1− δ)− 2(1− η)
=

(z + 2)2

ηz + 2(2η − 1)

(a+b)2≤2a2+2b2

≤ 2z2 + 8

ηz + 2(2η − 1)
a+b
c+d
≤a
c

+ b
d

≤
für a, b, c, d ≥ 0

2z

η
+

2

η − 1
2

η> 1
2

≤ 4‖δ‖∞ +
2

η0

.
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2. Let x ∈ X . Then it holds that

|δ(x)| Theorem 4.17
= |〈δ,Kx〉K |

CSU

≤ ‖δ‖K ·‖Kx‖K
Def. ‖ · ‖K from Def. 4.15

= ‖δ‖K
√
K(x, x) ≤ ‖δ‖K .

Remark: We therefore can only use the margin property for δ if it is known that
‖δ‖K ≤ ρ with some ρ > 0! This complicates the proof. Compared to the proofs for
logistic regression, we therefore have two additional difficulties :

(S1) Discussion of the approximation error

(S2) The margin condition does not hold uniformly for all δ ∈ HK in the optimization
problem (and additionally, it is also not possible to upper bound the expectation
of a supremum uniformly over all δ ∈ HK).

4.7 Simplified problem

Before considering Theorem 4.22, we will discuss a more simple estimation problem to
understand the structure of the whole proof. Let

B(ρ) := {δ ∈ HK : ‖δ‖K ≤ ρ}.

We consider
δ̂ = δ̂fixn ∈ arg min

δ∈B(ρ)

R̃n(δ). (36)

We have replaced the penalization λ‖δ‖K by an optimization over a new function set
δ ∈ B(ρ) with fixed maximal radius ρ.
For each δ0 ∈ B(ρ) (later, we choose δ0 ∈ arg minδ∈B(ρ){R̃(δ)− R̃(δ∗)}) it holds that

R̃(δ̂n)− R̃(δ∗) =
{
R̃(δ̂)− R̃(δ0)

}
+
{
R̃(δ0)− R̃(δ∗)

}
, (37)

and
R̃(δ̂)− R̃(δ0) = R̃n(δ̂)− R̃n(δ0)︸ ︷︷ ︸

≤0

+
{
R̃(δ̂)− R̃n(δ̂)− (R̃(δ0)−Rn(δ0))

}
. (38)

Remark 4.25. In the proof of Theorem 3.12 we introduced δ̃ = T δ̂ + (1 − T )δ0 with
T = r

r+D(δ̂,δ0)
(⇒ D(δ̃, δ0) ≤ r). We then derived the same inequality (38) for δ̃ to obtain

R̃(δ̃)− R̃(δ0) ≤ sup
δ∈B(ρ),D(δ,δ0)≤r

{
R̃(δ)− R̃n(δ)− (R̃(δ0)−Rn(δ0))

}
=: Zr,ρ(δ0).
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In principle, we could use this proof technique to obtain a result for δ̂fixn . It would even
be possible to include the approximation error (this is left as an exercise). However,
here we aim to use the intermediate results of this simpler proof technique also for
the original estimator δ̂SVMn (in particular, we want to deal with (S2)). To do so, the
introduction of δ̃ is obstructive. Therefore, we now present a different proof technique
for δ̂fixn . Heuristically, an upper bound of Zr,ρ(δ0) for

δ = δ̃ = δ0 + r · δ̂ − δ0

r +D(δ̂, δ0)

means that we have to investigate a rescaled supremum.

We will see that without introducing δ̃, it is helpful to find an upper bound for the
supremum

Vr,ρ(δ0) := sup
δ∈B(ρ)

{
R̃(δ)− R̃n(δ)− (R̃(δ0)−Rn(δ0))

}
r2 +D(δ, δ0)2

.

Let C ≥ 1 be arbitrary, r > 0 and A := {Vr,ρ(δ0) ≤ 1
C
}. From (38) we obtain:

R̃(δ̂)− R̃(δ0) ≤
{
R̃(δ̂)− R̃n(δ̂)− (R̃(δ0)−Rn(δ0))

}
D(δ̂, δ0)2 + r2

· (D(δ̂, δ0)2 + r2)

≤ C−1(D(δ̂, δ0)2 + r2)

With (37), we conclude that

R̃(δ̂)− R̃(δ∗) ≤ C−1(D(δ̂, δ0)2 + r2) + R̃(δ0)− R̃(δ∗).

Using the margin property from Lemma 4.24, we obtain

D(δ̂, δ0)2
(a+b)2≤2(a2+b2)

≤ 2D(δ̂, δ∗)2 + 2D(δ∗, δ0)2

≤ 2cρ(R̃(δ̂)− R̃(δ∗)) + 2cρ(R̃(δ0)− R̃(δ∗)). (39)

Putting the results together, this produces an implicit equation for R̃(δ̂)−R(δ∗):

R̃(δ̂)− R̃(δ∗) ≤ 2cρC
−1{R̃(δ̂)− R̃(δ∗)}+ [1 + 2cρC

−1]{R̃(δ0)− R̃(δ∗)}+ C−1r2

Solving for R̃(δ̂)− R̃(δ∗) yields

R̃(δ̂)− R̃(δ∗) ≤ 1 + 2cρC
−1

1− 2cρC−1
{R̃(δ0)− R̃(δ∗)}+

C−1

1− 2cρC−1
r2

Def. ρ0, C = cρN with N large enough
= 2 inf

δ∈B(ρ)
{R̃(δ)− R̃(δ∗)}+

c−1
ρ N−1

1−N−1
r2 (40)
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Caution: r can not be chosen arbitrarily! It has to have a specific size so that P(Ac) is
small.
The main part of the proof is to derive an upper bound for P(Ac). This is done in three
steps:

(a) Find an upper bound of E|Zr,ρ(δ0)| (only in this calculation the specific space over
which the supremum is taken plays a role)

(b) Find an upper bound of EVr,ρ(δ0) by using the so-called ’peeling device’

(c) Derivation of a concentration inequality for Vr,ρ(δ0) by using a Talagrand-type
inequality.

4.7.1 Step (a)

We first need a suitable orthonormal basis (ONB) of HK which allows to calculate
variances of g(X), g ∈ HK in a convenient way. Such an ONB is introduced by the
following lemma.

Lemma 4.26 (Calculation of the variance). There exists an ONB (ψj)j∈N of HK with
the following property: For g ∈ HK , it holds that E[g(X)2] =

∑∞
j=1 γj〈g, ψj〉2K .

Lemma 4.27. For all r, ρ > 0 and δ0 ∈ B(ρ), it holds that

E|Zr,ρ(δ0)| ≤ 4√
n

inf
a∈N

(√
ar + 2ρ

√∑
j>a

γj

)
=: φρ(r

2). (41)

Proof. L̃(y, s) = (1 − ys)+ is Lipschitz continuous with constant ` = 1. Lemma 3.11
implies that

E|Zr,ρ(δ0)| ≤ 4 · E sup
δ∈B(ρ),D(δ,δ0)≤r

∣∣ 1
n

n∑
i=1

εi
{
δ(Xi)− δ0(Xi)

}∣∣
with independent Rademacher variables εi, i = 1, ..., n.
δ, δ0 ∈ B(ρ) ⇒ ‖δ − δ0‖K ≤ 2ρ. Defining g := δ − δ0, it follows that

E|Zr,ρ(δ0)| ≤ 4 · E sup
g∈B(2ρ),E[g(X)2]≤r2

∣∣ 1
n

n∑
i=1

εig(Xi)
∣∣.
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We now make use of the ONB from Lemma 4.26. Each g ∈ HK has a representation
gα =

∑∞
j=1 αjψj with

‖g‖2
K

ψj ONB
=

∞∑
j=1

α2
j , E[g(X)2] =

∞∑
j=1

γjα
2
j .

Let

Γ(ρ, r) :=
{
α ∈ `2 :

∞∑
j=1

α2
j ≤ (2R)2,

∞∑
j=1

γjα
2
j ≤ r2

}
.

Then it holds that

EZr,ρ(δ0) ≤ 4

n
E sup
α∈Γ(ρ,r)

∣∣ n∑
i=1

εigα(Xi)
∣∣. (42)

Now the goal is to eliminate the supremum with respect to α by using pure analytical
methods. In the following, a parameter a ∈ N is introduced over which we can optimize
later on. The introduction of a is not necessary but yields better upper bounds! By the
Cauchy-Schwarz inequality (CSI)

∑
j ajbj ≤ (

∑
j a

2
j)

1/2(
∑

j b
2
j)

1/2, we have∣∣∣ n∑
i=1

εigα(Xi)
∣∣∣ ≤

∣∣∣∑
j≤a

αj
√
γj

n∑
i=1

εi
ψj(Xi)√

γj

∣∣∣+
∣∣∣∑
j>a

αj

n∑
i=1

εiψj(Xi)
∣∣∣

CSI

≤
(∑
j≤a

α2
jγj

)1/2(∑
j≤a

( n∑
i=1

εi
ψj(Xi)√

γj

)2)1/2

+
(∑
j>a

α2
j

)1/2(∑
j>a

( n∑
i=1

εiψj(Xi)
)2)1/2

α∈Γ(ρ,r)

≤
√
r
(∑
j≤a

( n∑
i=1

εi
ψj(Xi)√

γj

)2)1/2

+ 2ρ
(∑
j>a

( n∑
i=1

εiψj(Xi)
)2)1/2

.(43)

The right hand side does no longer depend on α. Therefore, we can upper bound the
expectation without taking care of the supremum with respect to α. Hölder’s inequality
E[Z1/2] ≤ E[Z]1/2 for random variables Z ≥ 0 yields

E
(∑
j≤a

( n∑
i=1

εi
ψj(Xi)√

γj

)2)1/2

≤
(∑
j≤a

E
[
E
[( n∑

i=1

εi
ψj(Xi)√

γj

)2∣∣∣X1, ..., Xn

]])1/2

=
(∑
j≤a

E
[ n∑
i=1

ψj(Xi)
2

γj

])1/2 Lemma 4.26:E[ψj(X)2]=γj
=

√
na.

We use the same technique for the second term in (43) (then only γj is left). Plugging
in these upper bounds in (43) and afterwards in (42) yields the assertion,

EZr,ρ(δ0) ≤ 4

n
E sup
α∈Γ(ρ,r)

∣∣ n∑
i=1

εigα(Xi)
∣∣ ≤ 4√

n

(√
ar + 2ρ

(∑
j>a

γj

)1/2)
.
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4.7.2 Step (b)

Lemma 4.28. For all r, ρ > 0 and δ0 ∈ B(ρ), it holds that EVr,ρ(δ0) ≤ 5φρ(r2)

r2 .

Proof. Abbreviate ∆n(δ) := R̃(δ) − R̃n(δ) − (R̃(δ0) − R̃n(δ0)). Then for each x > 1, it
holds that

Vr,ρ(δ0) = sup
δ∈B(ρ)

∆n(δ)

D(δ, δ0)2 + r2

≤ sup
δ∈B(ρ),D(δ,δ0)≤r

|∆n(δ)|
D(δ, δ0)2 + r2︸ ︷︷ ︸
≤ 1
r2
|∆n(δ)|

+
∑
k ≥0

sup
δ∈B(ρ):rxk≤D(δ,δ0)≤rxk+1

|∆n(δ)|
D(δ, δ0)2 + r2︸ ︷︷ ︸
≤ |∆n(δ)|
r2x2k+r2

≤ 1

r2

(
sup

δ∈B(ρ),D(δ,δ0)≤r
|∆n(δ)|+

∑
k≥0

1

1 + x2k
sup

δ∈B(ρ):D(δ,δ0)≤rxk+1

|∆n(δ)|
)
.

Note that φρ(rz) ≤ φρ(r)z
1/2 for z ≥ 1. This implies

EVr,ρ(δ0)
Lemma 4.27

≤ 1

r2

(
φρ(r

2) +
∑
k≥0

φρ(r
2x2(k+1))

1 + xk

)
≤ φρ(r

2)

r2

(
1 +

∑
k≥0

xk+1

1 + x2k︸ ︷︷ ︸
≤x·

∑
k≥0 x

−k= x2

x−1

)
≤ 5

φρ(r
2)

r2
.

The last step is obtained by choosing x = 2.

4.7.3 Step (c)

To derive a concentration inequality for Vr,ρ(δ0), we use a so-called Talagrand or Bousquet-
type inequality (cf. [4], Theorem 2.3).

Theorem 4.29. Let F := {f : W → R measurable} be a countable set of functions
on W ⊂ Rd. Let Wi, i = 1, ..., n be i.i.d. random variables with values in W . Suppose
that there exist σ2,M ∈ (0,∞) such that Ef(W ) = 0, supf∈F Var(f(W )) ≤ σ2 and
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supf∈F ‖f‖∞ ≤M . Let Z := supf∈F
∑n

i=1 f(Wi). Put v := nσ2 + 2MEZ. Then it holds
for t > 0 that

P(Z ≥ EZ +
√

2tv +
tM

3
) ≤ e−t.

Let α > 0. Due to
√
a+ b ≤

√
a +
√
b und 2

√
ab ≤ αa + b

α
, the right hand side can be

upper bounded as follows (motivation for this new bound is to eliminate v)

EZ +
√

2tv +
tM

3
≤ (1 + α)EZ +

√
2tn · σ + (

1

α
+

1

3
)tM.

Lemma 4.30. Let r, ρ > 0 and δ0 ∈ B(ρ). Then, for all t ≥ 0 it holds that

P
(
Vr,ρ(δ0) ≥ 6

φρ(r
2)

r2
+

√
2t

nr2
+

22(ρ+ 1)t

nr2

)
≤ e−t.

Proof. We apply Theorem 4.29 to the space W = X × {−1,+1}, the random variables
Wi = (Xi, Yi), i = 1, ..., n and the class of functions

F =
{
fδ(x, y) :=

1

n

R̃(δ)− L̃(y, δ(x))− (R̃(δ0)− L̃(y, δ0(x)))

D(δ, δ0)2 + r2
: δ ∈ B(ρ)

}
,

since

Vr,ρ(δ0) = sup
f∈F

n∑
i=1

f(Xi, Yi).

Lemma 4.24(ii) implies that |L̃(y, δ(x))| ≤ 1 + |δ(x)| ≤ 1 + ρ. Thus, it holds that

‖fδ‖∞ ≤
4(ρ+ 1)

nr2
,

and (due to |L̃(y, s)− L̃(y, s′)| ≤ |s− s′|)

Var(fδ(X, Y )) =
E[(L̃(Y, δ(X))− L̃(Y, δ(X)))2]

n2[D(δ, δ0)2 + r2]2
≤ D(δ, δ0)2

n2[D(δ, δ0)2 + r2]2

(a+b)2≥4ab

≤ 1

n2r2
.

Theorerm 4.29 and the upper bound mentioned directly afterwards yields

P
(
Vr,ρ(δ0) ≥ (1 + α)EVr,ρ(δ0) +

√
2t

nr
+ 4(

1

α
+

1

3
)(ρ+ 1)

t

nr

)
≤ e−t.

Caution: Note that F is not countable here! We can still apply the theorem since HK

is separable (this is left as an exercise). The assertion now follows by choosing α = 1
5

and using the result of Lemma 4.28.
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4.7.4 Selection of r

The following lemma is pure analytical statement (see the appendix for a proof).

Lemma 4.31. The equation φρ(z) = z
cρ

has exactly one solution z∗ρ,cρ ∈ (0,∞). This

solution satisfies
z∗ρ,cρ ≤ 16c2

ρ · γ(n),

where γ(n) is from Theorem 4.22. Furthermore, it holds that

z

cρ
≥ φρ(z) ⇐⇒ z ≥ z∗ρ,cρ . (44)

Putting our preliminary results together, we obtain the following theorem.

Theorem 4.32. Suppose that the assumptions of Theorem 4.22 are satisfied. Let ρ ≥ 1,
and let δ̂fixn be from (36). Then there exists a universal constant c > 0 such that for all
t ≥ 0, it holds that

P
(
R̃(δ̂fixn )− R̃(δ∗) ≥ 2 inf

δ∈B(ρ)
{R̃(δ)− R̃(δ∗)}+ c · {cργ(n) + ρ · t

n
}
)
≤ e−t.

Proof. From equation (40) we obtain that on A = {Vr,ρ(δ0) ≤ 1
cρN
}, it holds for N large

enough (N had to be chosen large enough to obtain the ’2’ in front of the infimum) that

R̃(δ̂)− R̃(δ∗) ≤ 2 inf
δ∈B(ρ)

{R̃(δ)− R̃(δ∗)}+
c−1
ρ N−1

1−N−1
r2. (45)

It is left to choose r2 to provide a meaningful bound of the probability of Ac. Lemma
4.30 implies that if

1

N
≥ 6cρ

φρ(r
2)

r2
+

√
2cρt

nr2
+

22cρ(ρ+ 1)t

nr2
,

then it holds that P(Ac) ≤ e−t. The above inequality is satisfied if

1

3N
≥ 6cρ

φρ(r
2)

r2
,

1

3N
≥
√

2cρt

nr2
,

1

3N
≥ 22cρ(ρ+ 1)t

nr2

⇐ r2 ≥ z∗ρ,18Ncρ , r2 ≥ (3N)2 · 2cρt

n
, r2 ≥ 66Ncρ(ρ+ 1)

t

n
,
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where we have used Lemma 4.31 for the first inequality. Therefore, we may choose any

r2 ≥ max
{
z∗ρ,18Ncρ , (3N)2 · 2cρt

n
, 66Ncρ(ρ+ 1)

t

n

}
,

e.g. (cf. Lemma 4.31 for the first term):

r = c(N) · cρ
{
cργ(n) + ρ · t

n

}
(46)

with suitable c(N) > 0 which is a universal constant only depending on N . Plugging

this into (45) yields the assertion with the universal constant c := c(N)N−1

1+N
.

4.7.5 Discussion of the complex problem

We now provide the proof of Theorem 4.22 which discusses the estimator

δ̂ ∈ arg min
δ∈HK

{
R̃n(δ) + λ · ‖δ‖2

K

}
.

The main difference to δ̂fixn is that instead of optimizing over δ ∈ B(ρ), we now use
a penalization term λ‖δ‖2

K and δ̂n ∈ HK has not known apriori to have a bounded
‖ · ‖K-norm.

Proof of Theorem 4.22. We start similar to the proof of the simplified problem. We
choose

δ0 ∈ arg min
δ∈HK

{
R̃(δ)− R̃(δ∗) + 2λ‖δ‖2

K}.

As before, it holds that

R̃(δ̂)− R̃(δ∗) =
{
R̃(δ̂)− R̃(δ0)

}
+
{
R̃(δ0)− R̃(δ∗)

}
. (47)

With a suitable chosen ρ̃ > 0 (which is determined below), the first term can be upper
bounded as follows:

R̃(δ̂)− R̃(δ0) = {R̃n(δ̂)− R̃n(δ0)}︸ ︷︷ ︸
≤λ‖δ0‖2K−λ‖δ̂‖

2
K

+{R̃(δ̂)− R̃n(δ̂)− (R̃(δ0)− R̃n(δ0)}

≤ {λ‖δ0‖2
K − λ‖δ̂‖2

K}+ Vr,ρ̃(δ0) · {r2 +D(δ̂, δ0)2}. (48)

Caution: To ensure the last inequality, we need that ρ̃ ≥ ‖δ̂‖K so that δ̂ ∈ B(ρ̃) (cf. the
Definition of Vr,ρ(δ0)). Moreover, we need that ρ̃ ≥ ‖δ0‖K to ensure δ0 ∈ B(ρ̃). If these
conditions are fulfilled, we can apply the concentration inequality from Lemma 4.30.
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Definition of a ’nice’ event A: In the proof of Theorem 4.32 the following was shown:
For fixed ρ > 0, δ0 ∈ B(ρ) and arbitrary N ∈ N, the event

Aρ,t(ρ0) := {Vr2
ρ,t,ρ

(δ0) ≤ 1

Ncρ
} (49)

with (cf. (46))

r2
ρ,t = c(N) · cρ

{
cργ(n) + ρ · t

n

}
satisfies P(Aρ,t(ρ0)c) ≤ e−t.
Problem: We need to upper bound the probability of the event Aρ̃,t(δ0)c, where ρ̃ is a

random variable (since ρ̃ is determined by the size of ‖δ̂‖K).
We therefore have to ensure that the event Aρ,t(δ0) holds uniformly for all possible
ρ = ρ̃. Thus, our nice event should have the form A =

⋂
ρ>0Aρ,t(δ0). We can not

use this event since we have no possibility to find a meaningful upper bound despite
P(Ac) ≤

∑
ρ>0 P(Aρ,t(δ0)c) which is infinity.

In the following, we therefore use a discretization R ⊂ (0,∞) of the space of possible
norms ‖δ̂‖K of δ̂, δ0. Additionally, we search for upper bounds for ‖δ̂‖K , ‖δ0‖K . Then
we define A as the intersection over all Aρ,t(δ0) with ρ ∈ R. Of course, R should not be
too coarse because then we obtain not so tight upper bounds.
We start by analyzing the maximal size of ‖δ̂‖K , ‖δ0‖K . Since 0 ∈ HK , it holds that

R̃n(δ̂) + λ‖δ̂‖2
K ≤ R̃n(0) + λ‖0‖2

K ≤ 1. (50)

⇒ λ‖δ̂‖2
K ≤ 1 ⇒ ‖δ̂‖K ≤ λ−1/2

λ ≥ n−1

≤ n1/2 ≤ n. (*)

A similar approach for δ0 implies that ‖δ0‖K ≤ n. (*)

Therefore, define
R = {2k : k ∈ N, 0 ≤ k ≤ dlog2(n)e}

and put

ρ̂ := 2k̂
(∗)
∈ R, k̂ = dlog2(‖δ̂‖K)+e,

ρ0 := 2k0
(∗)
∈ R, k0 = dlog2(‖δ0‖K)+e,

and
ρ̃ := max{ρ̂, ρ0}.

Then it holds that
‖δ0‖K , ‖δ̂‖K ≤ ρ̂,
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and vice versa,
ρ̂ ≤ max{2‖δ̂‖K , 1}, ρ0 ≤ max{2‖δ0‖K , 1}. (51)

That is, ρ̂ and ρ0 are good approximations of ‖δ̂‖K , ‖δ0‖K in the sense that we loose at
most a factor 2.

If we would define Ã :=
⋂
ρ∈R,ρ≥ρ0

Aρ,t(δ0), then we would obtain that

P(Ãc) ≤
∑

ρ∈R,ρ≥ρ0

P(Aρ,t(δ0)c) ≤
∑

ρ∈R,ρ≥ρ0

e−t ≤ |R|e−t,

that is, we have an additional factor |R| which we do not want to have. To obtain e−t

instead, we therefore put

A :=
⋂

ρ∈R,ρ≥ρ0

Aρ,t̃(δ0), t̃ := t+ log |R|.

Then we obtain
P(Ac) ≤ |R|e−t−log |R| = e−t.

Derivation of the upper bound of the excess Bayes risk on A: On A, the results
(50) and (49) imply

R̃(δ̂)− R̃(δ0)

≤ {λ‖δ0‖2
K − λ‖δ̂‖2

K}+ Vrρ̃,t̃,ρ̃(δ0) · {r2
ρ̃,t̃ +D(δ̂, δ0)2}

≤ {λ‖δ0‖2
K − λ‖δ̂‖2

K}+
1

cρ̃N
· { r2

ρ̃,t̃︸︷︷︸
=c(N)·cρ̃(cρ̃γ(n)+ρ̃· t̃

n
)

+ D(δ̂, δ0)2︸ ︷︷ ︸
wie in (39)

≤ 2cρ̃{R̃(δ̂)−R̃(δ∗)}+2cρ̃{R̃(δ0)−R̃(δ∗)}

}

≤ {λ‖δ0‖2
K − λ‖δ̂‖2

K}+
2c(N)

N
· ρ̂ · (γ(n) +

t̃

n
) +

2c(N)

N
· ρ0 · (γ(n) +

t̃

n
) +

4c(N)

N

γ(n)

η0

+
2

N
{R̃(δ̂)− R̃(δ∗)}+

2

N
{R̃(δ0)− R̃(δ∗)}.

In the last step, we made use of the structure cρ = 2( ρ
η1

+ 1
η0

) and that ρ̃ = max{ρ̂, ρ0} ≤
ρ̂+ ρ0. This was necessary to replace ρ̃ by terms involving ρ̂, ρ0.
Using (47) and rearranging terms yields

R̃(δ̂)− R̃(δ0) ≤ 1

1− 2N−1

[
(1 +

2

N
){R̃(δ̂)− R̃(δ∗) +

4c(N)

N

γ(n)

η0

+{λ‖δ0‖2
K−λ‖δ̂‖2

K}+
2c(N)

N
· ρ̂ · (γ(n)

η1

+
t̃

n
) +

2c(N)

N
· ρ0 · (

γ(n)

η1

+
t̃

n
)
]
.

We now only have to eliminate the (non-deterministic) term involving ρ̂ to obtain a
deterministic convergence rate. Note that this term came into the upper bound due to
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the statistical variation of {R̃(δ̂) − R̃n(δ̂) − R̃(δ0) − R̃n(δ0)}. The size of this term is
controlled by the penalization term λ‖δ̂‖2

K in the minimization problem for δ̂. Now, we
want to reflect this behavior in our proof (cp. the underlined terms above), that is, we
want to use the term λ‖δ̂‖2

K to eliminate the term containing ρ̂. To do so, we have to

find a connection between ρ̂ and ‖δ̂‖2
K .

From (51) and the elementary inequality max{2a, 1} ≤ 2 max{a, 1} ≤ 2 max{a2, 1} ≤
2(a2 + 1), we obtain

ρ̂ ≤ 2(‖δ̂‖2
K + 1), ρ0 ≤ 2(‖δ0‖2

K + 1)

If

λ ≥ 4c(N)

N
(
γ(n)

η1

+
t̃

n
), (52)

we therefore have

R̃(δ̂)− R̃(δ0) ≤ 1

1− 2N−1

[
(1 +

2

N
){R̃(δ0)− R̃(δ∗)}+

4c(N)

N

γ(n)

η0

−λ‖δ̂‖2
K +

4c(N)

N
· (‖δ̂‖2

K + 1) · (γ(n)

η1

+
t̃

n
)

+λ‖δ0‖2
K +

4c(N)

N
· (‖δ0‖2

K + 1) · (γ(n)

η1

+
t̃

n
)
]

≤ 1

1− 2N−1

[
(1 +

2

N
){R̃(δ0)− R̃(δ∗)}+ 2λ‖δ0‖2

K + 2λ+
4c(N)

N

γ(n)

η0︸ ︷︷ ︸
≤λ· η1

η0

]
.

Now, we choose N so large that 1+2N−1

1−2N−1 ≤ 2 (that is, for instance, N = 6). Then it holds
that

R̃(δ̂)− R̃(δ0) ≤ 2 {R̃(δ0)− R̃(δ∗) + 2λ‖δ0‖2
K}︸ ︷︷ ︸

Def. δ0= infδ∈HK {R̃(δ)−R̃(δ∗)+2λ‖δ‖2K}

+ 4︸︷︷︸
=:c2

λ(
η1

η0

+ 1).

Choice of λ: We simplify the right hand side of (52) as follows: It holds that log |R| ≤
log(dlog2(n)e+ 1) ≤ 2 log(log2(n) + 1), thus

4c(N)

N
(
γ(n)

η1

+
t̃

n
) ≤ 8c(N)

N︸ ︷︷ ︸
=:c1

(γ(n)

η1

+
log(log2(n) + 1) + t

n

)
.

The right hand side of the above inequality now coincides with the condition on λ in
the theorem. This concludes the proof.
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4.8 Appendix

The proof of the following lemma is mainly based on functional analysis.

Proof of Lemma 4.26. Let

T : HK → L2(PX), g 7→ g

be the canonical injection and T ∗ its adjoint. Then it holds that

(T ∗g)(x)
Reproc. prop. Thm. 4.17

= 〈K(x, ·), T ∗g〉HK
Adj.
= 〈TK(x, ·), g〉L2(PX)

=

∫
K(x, x′)g(x′)dPX(x′) = (TKg)(x).

It follows that TT ∗ = TK . Now let C := T ∗T : HK → HK .
Functional analysis ⇒ C has the same eigenvalues γi as TT ∗ = TK .
Let (ψj)j∈N be a basis consisting of eigenvectors of C := T ∗T : HK → HK corresponding
to these eigenvalues γj. For every g ∈ HK , it holds that

E[g(X)2]
T (g)=g

= E[(Tg(X))2] = 〈Tg, Tg〉L2(PX)
adjoint

= 〈Cg, g〉K
base representationg=

∑∞
j=1〈g,ψj〉ψj

=
∞∑
j=1

γj〈g, ψj〉2K

Proof of Lemma 4.31. Let a ∈ N and

φρ,a(z) =
4√
n

(√
az + 2ρ

√∑
j>a

λj

)
.

The equation φρ,a(z) = z
Cρ

can be rearranged as follows:

z∗ρ(a) =
4c2
ρ

n

(√
a+

√√√√a+ 2
√
n
ρ

cρ

√∑
j>a

γj

)2 (x+y)2≤2x2+2y2

≤
16c2

ρ

n

(
a+
√
n
ρ

cρ

√∑
j>a

γj

)2

.

Then it holds z∗ρ = z∗ρ(a
∗) for the minimizing value a∗ in φρ(z). For each a ∈ N, we have

z∗ρ
Cρ

= φρ(z
∗
ρ) ≤ φρ,a(z

∗
ρ),

that is, z∗ρ ≤ z∗ρ(a). Thus,

z∗ρ ≤ inf
a∈N

z∗ρ(a) ≤ inf
a∈N

16c2
ρ

n

(
a+
√
n
ρ

cρ

√∑
j>a

γj

)2
ρ
cρ
≤ η1

2

≤ 16c2
ργ(n).

The remaining analytical properties of φρ can be verified easily.
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4.9 Exercises

Task 11 (Discussion of Example 4.1: the naive classifier). Suppose that we are given
i.i.d. training samples (Xi, Yi) of a classification problem with X ⊂ Rd, Yi ∈ {−1,+1}.
Suppose that L̃(y, s) = (y − s)2. We use the abbreviation

∆ := {δβ(x) := xTβ : β ∈ Rd}.

We propose the following algorithm for classification:

β̂ :∈ arg min
β∈Rd

R̃n(δβ), R̃n(δ) :=
1

n

n∑
i=1

L̃(Yi, δ(Xi)),

and f̂n(x) := sign(δ̂n(x)), where δ̂n(x) := δβ̂(x) = xT β̂. We can interpret the above
classifier as a simple linear regression applied to (Xi, Yi).

1. Show that L̃(y, s) = φ(−ys) with suitable φ : R→ R≥0.

2. Use Theorem 3.19 to derive a Bayes rule δ∗ for the risk R̃(δ) := EL̃(Y, δ(X)).

3. Does the calibration condition hold?

4. Which model assumption should hold so that δ∗ ∈ ∆ ? Which properties should
X have such that this can be fulfilled?

5. Derive a risk transfer formula with Theorem 3.21.

6. Suppose that the noise condition with parameters q ≥ 0, C > 0 hold. Derive the
risk transfer formula from Theorem 3.24 in the above setting, in particular in the
case q =∞.

7. Let X ∼ N(µ, Id×d) and η(x) = P(Y = 1|X = x) = 1
2

+ 1
2
xTβ∗. Suppose that

β∗ ∈ Rd is chosen such that ‖β∗‖2 = 2 and µTβ∗ = 0. Show that the noise
condition is satisfied with q = 1.
Hint: The distribution function Φ(t) of the standard normal distribution is concave
for t ≥ 0, thus it holds that 2Φ(t)− 1 ≤ 2Φ′(0)t.

Task 12 (Examples for calibration condition and risk transfer formulas). Given is a
classification problem with X ⊂ Rd, Yi ∈ {−1,+1}. Let L̃(y, s) = φ(−ys), where we
consider the following two functions φ : R→ R≥0:

• φ(x) = φhinge(x) = max{1 + x, 0}, the so-called hinge loss,

• φ(x) = φexp(x) = ex, the so-called exponential loss.
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1. Convince yourself that φ is non-decreasing, convex and satisfied φ(0) = 1.

2. Use Theorem 3.19 to derive a Bayes rule δ∗ for the risk R̃(δ) := EL̃(Y, δ(X)).
Hint for φhinge: Due to monotonicity reasons, z 7→ Φη(z) has to attains its mini-
mum for z ∈ [−1, 1].

3. Prove that the calibration condition is fulfilled in both cases.

4. Use Theorem 3.21 to derive a risk transfer formula in both cases.

Task 13 (Derivation of the Wolfe-Dual and the optimality conditions of the SVM). Let
C > 0. Let β̂C , β̂0,C , ξ̂ be solutions of

min
β∈Rk,β0∈R,ξ∈Rn

1

2
‖β‖2

2 + C
n∑
i=1

ξi s.t. ∀i = 1, ..., n : Yi(X
T
i β + β0) ≥ 1− ξi,

ξi ≥ 0,

The optimization problem has the structure

min
θ∈Rr

F (θ) s.t. G(θ) ≤ 0

with θ = (β, β0, ξ) and

F (θ) =
1

2
‖β‖2

2 + C
n∑
i=1

ξi, G(θ) =

((
1− ξi − Yi(XT

i β + β0)
)
i=1,...,n

−ξ

)
.

Now let p = (α, γ) ∈ R2n
≥0, and define the Lagrange function L(θ, p) = F (θ) +G(θ)Tp.

1. Show that ∇θL(θ, p) = 0 is equivalent to

β =
n∑
i=1

αiYiXi,

n∑
i=1

αiYi = 0, ∀i : C − αi − γi = 0.

2. Show that the Wolfe Dual supθ∈Rr,p∈Rk≥0
L(θ, p) under the constraint ∇θL(θ, p) = 0

is equivalent to the optimization problem

min
α∈Rn

{1

2
αTQα− 1Tα

}
s.t. YTα = 0, 0 ≤ α ≤ C,

where 1 = (1, ..., 1)T , Y = (Y1, ..., Yn)T andQ := (Qij)i,j=1,...,n mitQij = YiYjX
T
i Xj.
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3. Conclude from the optimality conditions ∇θL(θ̂, p̂) = 0, G(θ̂)T p̂ = 0, p̂ ≥ 0 and
G(θ̂) ≤ 0 that the following connection is satisfied for the solution of the original
optimization problem and the solutions α̂ of the Wolfe Dual:

β̂C =
n∑
i=1

α̂iYiXi, β̂0,C = Yi −XT
i β̂C with some i with 0 < α̂i < C.

Task 14 (SVM: Kernels and their nonlinear transformations behind). Let Kp : Rd ×
Rd → R, Kp(x, x

′) := (1 + xTx′)p be the polynomial kernel with degree p ∈ N.

1. Let d = 2, p = 2. Find a mapping h : R2 → R6 such that Kp(x, x
′) = h(x)Th(x′).

2. Let p, d be arbitrary. Find a mapping h : Rd → Rm such that Kp(x, x
′) =

h(x)Th(x′). Provide an upper bound for m ∈ N.
Hint: Define x̃ := (1, x), x̃′ := (1, x′) and write Kp(x, x

′) = (x̃, x̃′)p.

Let Kγ : Rd × Rd → R, Kγ(x, x
′) = exp(−γ‖x − x′‖2

2) be the Gaussian kernel with
descent γ.

(c) Let d = 1. Find a mapping h : R→ `2 such that Kγ(x, x
′) = h(x)Th(x′).

(d) Let d be arbitrary. How does h look like?

Task 15 (Analysis of the convergence rates in Theorem 4.22). Let K : X × X → R be
a Mercer kernel. In the oracle inequality in Theorem 4.22, the convergence rate of the
estimation error is given by

γ(n) =
1√
n

inf
a∈N

{ a√
n

+

√∑
j>a

γj
}
.

(here, we ignore η1 for simplicity), where γj are the eigenvalues of the integral operator
TK : L2(PX) → L2(PX), (TKg)(x) :=

∫
K(x, x′)g(x′) dPX(x′). In this task we derive

(non-optimal) upper bounds for different decay structures of γj.

1. Suppose that there exists C > 0 with γj = 0 for j > C. Show that γ(n) ≤ C
n

.

2. Suppose that there exists C > 0 with γj ≤ Cj−α (α > 1). Show that γ(n) ≤
c̃α · ( 1

n
+ C

1
α+1n−

α
α+1 ), where c̃α is constant only depending on α.

Hint: Use without proof that
∑

j>a j
−α ≤ cαa

−α+1 with some cα > 0.

3. Suppose that there exists C > 0 with γj ≤ Cρj (ρ ∈ (0, 1)). Show that γ(n) ≤
cρ · ( 1

n
+ 2 log(nC)

nC1/2 ), where cρ is a constant which only depends on ρ.
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If X = [0, 1]d and PX = U [0, 1]d is the uniform distribution on [0, 1]d, then we have
(TKg)(x) =

∫
K(x, x′)g(x′)dx′. Let K(x, x′) = h(x)Th(x′) with suitably chosen h :

Rd → `2.

(d) Show that if (hk)k∈N is orthogonal in L2(λ), then we have γk =
∫
hk(x)2dx.

(e) Argue that the polynomial kernel Kp(x, x
′) satisfies: γ(n) ≤ (d+ 1)p.

Hint: Use (a),(d) and Task 14(b).

Task 16 (Margin property of the SVM for the general noise condition). To prove the
quadratric margin property of the SVM, we have assumed in Lemma 4.24 that there
exists some η0 > 0 such that |η(x) − 1

2
| ≥ η0 for all s ∈ X , that is, the noise condition

is fulfilled with q = ∞. In the following we suppose instead that the noise condition is
only fulfilled with some q ∈ (1,∞), that is, there exists some C > 0 such that

∀t > 0 : P(|η(X)− 1

2
| ≤ t) ≤ Ctq.

Let δ∗(x) denote the Bayes rule with respect to L̃(y, s) = (1− ys)+. Show that for any
δ : X → R with ‖δ‖∞ ≤ ρ it holds that

E[(δ(X)− δ∗(X))2] ≤ c̃ρ ·
{
R̃(δ)− R̃(δ∗)

} q
q+1 ,

where c̃ρ > 0 is a constant which only depends on ρ, η0, η1, C.
Hints:

• It was already shown in Lemma 4.24 that A(x) = (δ(x)−δ∗(x))2

E[L̃(Y,δ(X))−L̃(Y,δ∗(X))|X=x]
≤

cρ(η0) = 2( ρ
η1

+ 1
η0

).

• Introduce 1 = 1{|η(X)− 1
2
|>t} + 1{|η(X)− 1

2
|≤t} in E[(δ(X) − δ∗(X))2] and choose a

suitable t (cf. the proof of the risk transfer formula, Theorem 3.24).

• Finally, make use of the inequality R̃(δ)− R̃(δ∗) ≤ (ρ+ 1)
1
q (R̃(δ)− R̃(δ∗))

q
q+1 .

Task 17 (An alternative way to prove the convergence rate of the simplified SVM
algorithm). Let HK be the RKHS corresponding to some Mercer kernel K. In this task
we consider a fixed ρ > 0 and the algorithm

δ̂ ∈ arg min
δ∈B(ρ)

R̃n(δ), B(ρ) := {δ ∈ HK : ‖δ‖K ≤ ρ},

where R̃n(δ) = 1
n

∑n
i=1 L̃(Yi, δ(Xi)) and L̃(y, s) = (1 − ys)+ is the hinge loss. Let

D(δ, δ0) := E[(δ(X)−δ∗(X))2]1/2. Let δ0 ∈ arg minδ∈B(ρ) R̃(δ), where R̃(δ) := EL̃(Y, δ(X)).
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1. Let r > 0 and δ̃ := T δ̂ + (1− T )δ0 with T := r

r+D(δ̂,δ0)
. Show that

δ̃ ∈ B(ρ), D(δ̃, δ0) ≤ r.

2. Conclude that
R̃(δ̃)− R̃(δ∗) ≤ {R̃(δ0)− R̃(δ∗)}+ Zr,

where Zr := supδ∈B(ρ),D(δ,δ0)≤r{R̃(δ)− R̃n(δ)− (R̃(δ0)− R̃n(δ0))}.
Hint: Use that L̃(y, s) is convex in s.

3. Define A := {Zr ≤ 1
8cρ

( r
2
)2}. Show that on the event A and under the assumption

R̃(δ0)− R̃(δ∗) ≤ 1
8cρ

( r
2
)2, it holds that

D(δ̃, δ∗) ≤ r

4
.

Hint: You may use the quadratic margin property D(δ, δ∗)2 ≤ cρ{R̃(δ)− R̃(δ∗)}.

4. Suppose the conditions from (c). Show that

R̃(δ̂)− R̃(δ∗) ≤ {R̃(δ0)− R̃(δ∗)}+
1

8cρ
(
r

2
)2.

5. It was shown already in Lemma 4.27 that E|Zr| ≤ φρ(r
2). Use Talagrand’s in-

equality (Theorem 4.29) and the conclusion below with α = 1 to show that for
each t > 0, it holds that

P
(
Zr ≥ 2φρ(r

2) +

√
2t

n
· r +

16(ρ+ 1)

3
· t
n

)
≤ e−t.

Hint: For δ ∈ B(ρ), it holds that ‖δ‖∞ ≤ ρ.

6. Let

r = max
{

4·192cργ(n)1/2, 96cρ

√
2t

n
, 16

√
cρ(ρ+ 1)·

√
2t

n
, 2

(
8cρ{R̃(δ0)−R̃(δ∗)}

)1/2
}
.

Show that P(Ac) ≤ e−t and R̃(δ0)− R̃(δ∗) ≤ 1
2cρ

( r
2
)2.

Hints:

• Upper bound all 3 terms in the probability in (e) individually by 1
24cρ

( r
2
)2.

• The inequality r2

192cρ
≥ φρ(r

2) is satisfied if r2 ≥ 16(192cρ)
2γ(n), cf. Lemma

4.31.
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7. Conclude that with probability ≥ 1− e−t, it holds that

R̃(δ̂)− R̃(δ∗) ≤ 2 inf
δ∈B(ρ)

{R̃(δ)− R̃(δ∗)}+ c ·
{
cργ(n) + (cρ + ρ+ 1) · t

n

}
,

where c is some universal constant.
Hint: For a, b ≥ 0 it holds that max{a, b} ≤ a+ b.

8. Discuss how one has to modify the proof so that the following assertion is obtained:
With probability ≥ 1− e−t, it holds that

R̃(δ̂)− R̃(δ∗) ≤ (1 + ε){R̃(δ0)− R̃(δ∗)}+ c(ε) ·
{
cργ(n) + (cρ + ρ+ 1) · t

n

}
,

where ε > 0 is arbitrarily small and c(ε) > 0 is some constant only dependent on
ε.

9. Discussion: The proof assumes (basically without any justification) that there
exists some δ0 ∈ B(ρ) such that R̃(δ0) = infδ∈B(ρ) R̃(δ). In general, one can only

hope that there exists some sequence (δm)m∈N ⊂ B(ρ) with R̃(δm) ↓ infδ∈B(ρ) R̃(δ).
Therefore, the proof has to be performed with each δm, m ∈ N (instead of a fixed
δ0). Summarize shortly where one has to modify the proof.

Task 18 (Discussion: Bernstein’s inequality and Talagrand’s inequality, separability).
In this task we discuss the relationship between Bernstein’s and Talagrand’s inequality.
Let Xi ∈ X ⊂ Rd, i = 1, ..., n be i.i.d. and F ⊂ {f : X → R measurable} be countable.
Suppose that Ef(X) = 0, supf∈F Var(f(X)) ≤ σ2 and supf∈F ‖f‖∞ ≤ M . Let v :=
nσ2 + 2MEZ. Then for Z := supf∈F

∑n
i=1 f(Xi) and t > 0, it holds that

P(Z ≥ EZ +
√

2tv +
tM

3
) ≤ e−t (Talagrand),

P(
n∑
i=1

f(Xi) ≥
√

2tnσ +
tM

3
) ≤ e−t (Bernstein).

1. Show the statement after Theorem 4.29 in detail: For α > 0, Talagrand’s inequality
implies

P(Z ≥ (1 + α)EZ +
√

2tnσ + (
1

α
+

1

3
)tM) ≤ e−t

2. Compare the statements from Talagrand’s and Bernstein’s inequality. Which term
is needed additionally to explain the variation of supf∈F

∑n
i=1 f(Xi) in opposite to∑n

i=1 f(Xi) for fixed f ∈ F? Interprete this result.
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3. Suppose that F is not countable, but (as a subset of a normed subspace (E , ‖ · ‖))
separable, that is, there exists a dense subset Fsep ⊂ F . Moreover, suppose that
there exists some constant C > 0 such that for all x ∈ X and f, g ∈ F , it holds
that |f(x)− g(x)| ≤ C‖f − g‖. Show that it holds that

sup
f∈F

n∑
i=1

f(Xi) = sup
g∈Fsep

n∑
i=1

g(Xi).

4. Application in the SVM proof (Lemma 4.30): As a Hilbert space with countable
orthonormal basis, HK is separable. Show with (c) that Talagrand’s inequality can

be applied to the set F ⊂ {fδ(x, y) = (EL̃(Y,δ(X))−EL̃(Y,δ0(X)))−(L̃(y,δ(x))−L̃(y,δ0(x)))
n(D(δ,δ0)2+r2)

: δ ∈
B(ρ)}.

Task 19 (Expected excess Bayes risk instead of large deviation inequality). In this task,
we derive upper bounds for expectations based on large deviations inequalities. This is
based on the equality

EZ =

∫ ∞
0

P(Z ≥ x)dx

for random variables Z ≥ 0.

1. Suppose that P(Z ≥ A+B · t) ≤ g(t), where
∫∞

0
g(t)dt <∞. Show that

EZ ≤ A+B ·
∫
g(t)dt.

2. Show that the estimator of Task 18 satisfies

ER̃(δ̂)− R̃(δ∗) ≤ 2 inf
δ∈B(ρ)

{R̃(δ)− R̃(δ∗)}+ c ·
{
cργ(n) + (cρ + ρ+ 1) · 1

n
}.
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5 A short excursus: kernel nonparametric statistics

This chapter gives a (very) brief introduction to standard kernel-based estimators from
nonparametric statistics and their convergence rates. It is important to have these results
in mind so that the improvements obtained by machine learning algorithms in the next
chapters can be appreciated. The results are (partly) discussed in the exercises.
Contrary to the chapters before, we do not assume any explicit parametric structure
on f ∗ or on the optimal discriminant function δ∗. Instead, we ask for some structural
assumptions. To do so, we define the class

F(L) := {g : X → R | ∀x, x′ ∈ X : |g(x)− g(x′)| ≤ L · ‖x− x′‖∞} (53)

of Lipschitz continuous functions with Lipschitz constant L with respect to the maximum
norm ‖ · ‖∞ on Rd.

5.1 The kernel regression estimator

We first consider regression problems, that is, X ⊂ Rd, Y = R and L(y, s) = (y − s)2

with Bayes rule f ∗(x) = E[Y |X = x]. We work under the following assumption.

Definition 5.1 (Model assumption: nonparametric regression). Suppose that f ∗ ∈
F(L) with

Y = f ∗(X) + ε,

where E[ε|X] = 0, E[ε2|X] = σ2.

Caution: In the above model we have E[Y |X = x] = f ∗(x), that is, Definition 5.1 is a
direct assumption on the structure of the Bayes rule f ∗.
As in chapter 2, we obtain the following representation of the excess Bayes risk.

Lemma 5.2 (Excess Bayes risk). For f : X → R measurable it holds that R(f) −
R(f ∗) = E[(f(X)− f ∗(X))2] and R(f ∗) = σ2.

Because of Y ≈ f ∗(X) the standard approach in nonparametric statistics to estimate
f ∗(x) at some x ∈ X as follows: Search for all observations Xi near to x and average
over the corresponding Yi. This leads to the following formula: For some parameter
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h > 0 (the so-called ’bandwidth’), define

f̂n,h(x) =
sum of observations Yi with Xi near to x

number of summands

=

∑
i∈{1,...,n}:|Xi−x|≤h/2 Yi∑
i∈{1,...,n}:|Xi−x|≤h/2 1

=

∑n
i=1 1{|Xi−x

h
|≤ 1

2
}∑n

i=1 1{|Xi−x
h
|≤ 1

2
}

=

∑n
i=1W

(
Xi−x
h

)
Yi∑n

i=1 W
(
Xi−x
h

)
with W (x) = 1[− 1

2
, 1
2

](x). The bandwidth h should be understood as a limit which indi-
cates which observations are still considered as ’near’. W weights the single observations
Yi according to their distance |Xi − x| towards x. Note that however in the above for-
mula, no real ’weighting’ takes place since all observations are given the same factor 1
(if |Xi − x| ≤ h

2
). We now allow for more complicated weightings.

Definition 5.3 (Kernel function). A mapping W : Rd → [0,∞) with
∫
RdW (x)dx = 1

is called kernel function.

Using such a general kernel function, we obtain the following algorithm.

Definition 5.4 (Kernel regression estimator). Let h > 0 (’bandwidth’) and W a kernel
function. The algorithm

f̂n,h(x) :=

∑n
i=1W

(
Xi−x
h

)
Yi∑n

i=1 W
(
Xi−x
h

)
is called kernel regression estimator.

In the following let g denote the density of X with respect to the Lebesgue measure on
X .

Theorem 5.5 (Convergence rate of the kernel regression estimator). Let X ⊂ Rd be
compact. Suppose that g ∈ F(L) and that there are constants cg > 0, Cg, CW , Cε ≥ 1
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such that cg ≤ g(x) ≤ Cg for all x ∈ X , |ε1| ≤ Cε and∫
W (u)2du,

∫
W (u)‖u‖∞du,

∫
W (u)2‖u‖2

∞du, ‖W‖∞ ≤ CW .

Then the following statement holds: For all h > 0 with

cg
4LCW

≥ h ≥ max{128CgCW
c2
g

,
8CW
3cg
}1/d ·

( log(n)

n

)1/d
, (54)

we have

ER(f̂n,h)−R(f ∗) ≤ γ(n, h) :=
8C2

gC
2
W

c2
g

·
{ σ2

nhd
+L2 ·h2 +L2 · h

2

nhd
}

+ 8(‖f ∗‖∞+Cε)
2n−1.

Proof. The proof is left as an exercise.

Remarks:

• Only the first two summands of γ(n, h) are relevant for the convergence rate, the
others are of smaller order. If we optimize the convergence rate with respect to h,

we find that h∗ = n−
1
d+2 yields

γ(n, h∗) ≈ const. · n−
2
d+2 .

• We see that the upper bound n−
2

2+d for the excess Bayes risk is very slow in n if d
is large (even for the optimal h). d slows down the rate exponentially in n. This is
called the ’curse of dimension’. The reason is that our model assumption is very
general and does not produce much structural information on f ∗. Since we only
know that f ∗ is Lipschitz continuous, the observations Xi have to be located very
dense in X . As an example, consider X = [0, 1]d. Then we need at least ad training
samples to guarantee that in each dimension, there lie a points. Vice versa, given
n training samples, one can only use a = n1/d points along each dimension for
estimation. This is a heuristic explanation of the exponent 1/d appearing in the
convergence rate obtained above.

• X is compact is only needed to realize the assumption that g has a lower bound
(that is, g(x) ≥ cg).

90



5 A short excursus: kernel nonparametric statistics

5.2 Classification

We now consider classification problems (for simplicity, again only with two classes),
that is, X ⊂ Rd, Y = {−1,+1}, L(y, s) = 1{y 6=s}. The Bayes rule reads

f ∗(x) = arg max
k∈Y

P(Y = k|X = x).

To motivate an estimator, we start by recalling Bayes’ theorem.

Lemma 5.6 (Bayes’ theorem). Let λ denote the Lebesgue measure on Rd. Let πk :=
P(Y = k) and let gk denote the conditional density of X given Y = k with respect to λ,
and g then density of X with respect to λ. Then it holds that

P(Y = k|X = x) =
πk · gk(x)

g(x)
, k ∈ Y .

Given a kernel function W , an estimator of the density g(x) is given by

ĝn,h(x) :=
1

nhd

n∑
i=1

W
(Xi − x

h

)
.

Here, for each x ∈ X the number of training samples Xi near to x is determined and
then divided by the average number of samples in this ’volume’ nhd. Mathematically, it
is also possible to derive the above estimator very naturally as derivative of the empirical
distribution function.
Similarly, we estimate the conditional densities gk only based on the observations Xi

with Yi = k. In summary, we obtain the following classifier.

Definition 5.7 (Kernel classification algorithm). Let K be a kernel function and h > 0
(’bandwidth’). Put

π̂k =
#{i : Yi = k}

n
, ĝk,n,h(x) =

1

nπ̂khd

∑
i:Yi=k

W
(Xi − x

h

)
.

Let δ̂k(x) =
π̂k·ĝk,n,h(x)

ĝn,h(x)
. Then

f̂n,h(x) := arg max
k∈Y

δ̂k(x)

is called the kernel classification algorithm.

91



5 A short excursus: kernel nonparametric statistics

If we restrict ourselves to two classes Y = {−1,+1} as mentioned at the beginning of
this section, the above estimator has a more simple representation. In this case, it holds
that δ̂1(x) + δ̂−1(x) = 1 and thus

f̂n,h(x) =

{
1, δ̂1(x) > δ̂−1(x),

−1, δ̂1(x) < δ̂−1(x)
=

{
1, 2δ̂1(x) > 1,

−1, 2δ̂1(x) < 1
= sign(2δ̂1(x)− 1).

This leads to the following definition.

Definition 5.8 (Kernel classification algorithm for two classes). Let K be a kernel
function and h > 0 (’bandwidth’). Put

δ̂(x) = 2δ̂1(x)− 1, δ̂1(x) =

∑n
i=1 W (Xi−x

h
)1{Yi=1}∑n

i=1W (Xi−x
h

)
.

Then
f̂n,h(x) := sign(δ̂(x))

is called the kernel classification algorithm.

Note that δ̂1(x) has the same form as the kernel regression estimator from Definition
5.4 (but with 1{Yi=1} instead of Yi). This can be used to transfer properties from the
regression to the classification case.
For regression estimators, we measured the risk based on the squared loss E[(ĝn,h(x) −
g(x))2]. We now try to relate the excess Bayes risk R(f̂n,h)−R(f ∗) (with respect to the
0-1 loss) to such terms. To do so, we apply the risk transfer formula to the squared loss
L̃(y, s) = (y − s)2, R̃(δ) = EL̃(Y, δ(X)).
Caution: In our setting, we can not use the noise condition with q =∞ since later on
we want to assume that η(x) = P(Y = 1|X = x) is Lipschitz continuous! Therefore, we
do not impose any noise condition and only use the standard risk transfer formula.

Lemma 5.9. It holds that

R(sign(δ))−R(f ∗) ≤
{
R̃(δ)− R̃(δ∗)

}1/2
,

where δ∗(x) = 2η(x)− 1.

Proof. We apply Theorem 3.24 and Theorem 3.19 with L̃(y, s) = (y− s)2 = (1− ys)2 =
φ(−ys), φ(x) = (1 + x)2, s = 2 and CH = 1

2
. The details are left as an exercise.
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Theorem 5.10 (Convergence rate of the kernel classification algorithm). Suppose that
X ⊂ Rd is compact. Suppose that g, η ∈ F(L) and that there exist cg, Cg, CW > 0 such
that cg ≤ g(x) ≤ Cg for all x ∈ X and∫

W (u)2du,

∫
W (u)‖u‖∞du,

∫
W (u)2‖u‖2

∞du, ‖W‖∞ ≤ CW .

If the bandwidth satisfies (54), then it holds that

ER(f̂n,h)−R(f ∗) ≤ γ2(n, h) := 2
(8C2

gC
2
W

c2
g

·
{ 1

nhd
+ L2 · h2 + L2 · h

2

nhd
}

+ 32n−1
)1/2

.

Proof. Lemma 5.2 ⇒

R̃(δ̂)− R̃(δ∗) = E[(δ̂(X)− δ∗(X))2]

= 4E[(δ̂1(X)− η(X))2] = 4{R̃(δ̂1)− R̃(η)}.

Lemma 5.9 ⇒

R(f̂n,h)−R(f ∗) ≤ {R̃(δ̂)− R̃(δ∗)}1/2 ≤ 2{R̃(δ̂1)− R̃(η)}1/2. (55)

Note that δ̂1(x) is a kernel regression estimator in the model

1{Y=1}︸ ︷︷ ︸
=:Ỹ

= η(X) + {1{Y=1} − η(X)}︸ ︷︷ ︸
=:ε̃

It holds that E[ε̃|X] = η(X)− η(X) = 0 and E[ε̃2|X] = Var(1{Y=1}) = η(X)− η(X)2 ≤
1 =: σ2, as well as |η(x)| ≤ 1 =: Cf∗ , |ε̃1| ≤ |1{Y=1} − η(X)| ≤ 1. This shows that the
model assumption of the regression model from Definition 5.1 is satisfied. Theorem 5.5
implies

ER̃(δ̂1)− R̃(η) ≤ γ(n, h).

With (55) and E[Z1/2] ≤ (EZ)1/2, we obtain the assertion.

Besides the additional exponent 1
2
, our bound has the same properties as in the regression

case. In particular, we it suffers from the ’curse of dimension’ (even for the best possible
bandwidth h). Again, this is due to our general assumption which only asks for Lipschitz
continuity of the density g and the function η.
One could ask oneself if the exponent 1

2
can be improved. In fact, there is a complex

relationship between the smoothness of η(x) and the possible q for which the noise
condition holds. We will not investigate this here, but refer to [11] or [17] for a detailed
summary.
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5.3 The naive Bayes classifier

The can overcome the curse of dimension by imposing more specific structural assump-
tions on either the distribution or the Bayes rule itself. Here, we will present one possi-
bility of such a structural assumption. We will assume that the components X1, ..., Xd of
X are independent conditional on each class Y = k. Note that this is a quite restrictive
assumption.

Definition 5.11 (Model assumption: naive Bayes classifier). For k ∈ Y there exist

measurable functions g
(j)
k : R → R≥0 (j = 1, ..., d), such that the conditional density of

gk of X given Y = k satisfies

gk(x) =
d∏
j=1

g
(j)
k (xj), x = (x1, ..., xd)

T ∈ Rd.

Due to the given structure, we can estimate the conditional densities g
(j)
k (which has a

one-dimensional domain of definition) instead of estimating the whole function gk (which
has a d-dimensional domain of definition).

Definition 5.12 (Naive Bayes classifier). Fix x = (x1, ..., xd)
T ∈ Rd. Let h > 0, and let

W be a kernel function. Define π̂k := #{i∈{1,...,n}:Yi=k}
n

and

ĝ
(j)
k (xj) =

1

π̂knh

∑
i:Yi=k

W
(Xij − xj

h

)
.

Put ĝk(x) =
∏d

j=1 ĝ
(j)
k (xj). Let δ̂k(x) = π̂k·ĝk(x)∑

l∈Y π̂lĝl(x)
. Then

f̂n,h(x) := arg min
k∈Y

δ̂k(x)

is called the naive Bayes classifier.

Remark (about the name):

• The part ’Bayes’ comes from the fact that we pose an assumption on the priori
distribution X|Y = k and the classifier is built based on Bayes’ theorem (as in
Definition 5.7).
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• It is called ’naive’ because the model assumption in Definition 5.11 is quite restric-
tive. In practice, one can not hope that the different features in a feature vector
are independent; often they will be highly dependent.

An analysis of the naive Bayes classifier which yields good convergence rates both in d, n
is out of the scope of this lecture. Here we restrict ourselves to a result which drastically
improves the rate only with respect to n compared to Theorem 5.10.
As before, we restrict ourselves to two classes Y = {−1,+1} and note that δ̂1(x) +
δ̂−1(x) = 1 as well as

f̂n,h(x) = sign(δ̂(x)), δ̂(x) = 2δ̂1(x)− 1.

As in the proof of Theorem 5.10, we therefore have (without posing a noise condition)
that

R(f̂n,h)−R(f ∗) ≤ 2{R̃(δ̂1)− R̃(η)}1/2 (56)

with the quadratic loss L̃(y, s) = (y − s)2. To analyze the right hand side, define

δ̂
(j)
1 (xj) :=

π̂1ĝ
(j)
1 (xj)

ĝ(j)(xj)
,

where ĝ(j)(xj) := 1
nh

∑n
i=1W

(Xij−xj
h

)
. Then we have

δ̂1(x) =
π̂1

∏d
j=1 ĝ

(j)
1 (xj)

π̂1

∏d
j=1 ĝ

(j)
1 (xj) + π̂−1

∏d
j=1 ĝ

(j)
−1(xj)

=

1

π̂d−1
1

∏d
j=1

π̂1ĝ
(j)
1 (xj)

ĝ(j)(xj)

1

π̂d−1
1

∏d
j=1

π̂1ĝ
(j)
1 (xj)

ĝ(j)(xj)
+ 1

π̂d−1
−1

∏d
j=1

π̂−1ĝ
(j)
−1(xj)

ĝ(j)(xj)

=
π̂d−1
−1

∏d
j=1 δ̂

(j)
1 (xj)

π̂d−1
−1

∏d
j=1 δ̂

(j)
1 (xj) + π̂d−1

1

∏d
j=1(1− δ̂(j)

1 (xj))
. (57)

Similarly, with η(j)(xj) = P(Y = 1|Xj = xj), we obtain

η(x) =
πd−1
−1

∏d
j=1 η

(j)(xj)

πd−1
−1

∏d
j=1 η

(j)(xj) + πd−1
1

∏d
j=1(1− η(j)(xj))

. (58)

Theorem 5.13. Suppose that for all j ∈ {1, ..., d}, g(j), η(j) ∈ F(L) and that there exist
cg, Cg, CW , η0 > 0 such that cg ≤ g(j)(x) ≤ Cg, η0 ≤ η(j)(x) ≤ 1− η0 for all x ∈ X and∫

W (u)2du,

∫
W (u)‖u‖∞du,

∫
W (u)2‖u‖2

∞du, ‖W‖∞ ≤ CW .
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Then the following statement holds: For all h > 0 with

cg
4LCW

≥ h ≥ max{128CgCW
c2
g

,
8CW
3cg
} · log(n)

n
, (59)

we have with some universal constant c > 0 that

R(f̂n,h)−R(f ∗) ≤ γnaiv(n, h) :=
cd

ηd0(πd−1
−1 + πd−1

1 )
·
{CgCW

cg
·
{ σ2

nh
+L2·h2+L2· h

2

nh

}1/2
+n−1/2

}
.

Proof. The structures in (57) and (58) have the form a
a+b

, a′

a′+b′
with a, a′, b, b′ ≥ 0. We

now use ∣∣ a

a+ b
− a′

a′ + b′
∣∣ =

|ab′ − a′b|
(a+ b)(a′ + b′)

≤ a

a+ b
·
( |b− b′|
a′ + b′

+
|a− a′|
a′ + b′

)
.

Suppose that there exists η0 > 0 such that 1− η0 ≥ η(j)(xj) ≥ η0, j = 1, ..., d. Then we
have a

a+b
≤ 1, and 1

a′+b′
≤ 1

ηd0(πd−1
−1 +πd−1

1 )
, therefore

|δ̂1(x)− η(x)|

≤ 1

ηd0(πd−1
−1 + πd−1

1 )
·
(∣∣∣π̂d−1

−1

d∏
j=1

δ̂
(j)
1 (xj)− πd−1

−1

d∏
j=1

η(j)(xj)
∣∣∣

+
∣∣∣π̂d−1

1

d∏
j=1

(1− δ̂(j)
1 (xj))− πd−1

1

d∏
j=1

(1− η(j)(xj))
∣∣∣).(60)

By definition, π̂k, πk ∈ [0, 1] and δ̂
(j)
1 , η(j) ∈ [0, 1]. Therefore, we obtain∣∣∣π̂d−1

−1

d∏
j=1

δ̂
(j)
1 (xj)− πd−1

−1

d∏
j=1

η(j)(xj)
∣∣∣

≤
∣∣π̂d−1
−1 − πd−1

−1

∣∣ · d∏
j=1

δ̂
(j)
1 (xj) + πd−1

−1 ·
∣∣∣ d∏
j=1

δ̂
(j)
1 (xj)−

d∏
j=1

η(j)(xj)
∣∣∣

≤ (d− 1) · |π̂−1 − π−1|+
d∑
j=1

∣∣δ̂(j)
1 (xj)− η(j)(xj)

∣∣.
Insertion into (60) yields

|δ̂1(x)− η(x)| ≤
d ·
{
|π̂−1 − π−1|+ |π̂1 − π1|

}
+ 2

∑d
j=1

∣∣δ̂(j)
1 (xj)− η(j)(xj)

∣∣
ηd0(πd−1

−1 + πd−1
1 )

.
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We obtain that (note that Z 7→ E[Z2]1/2 is a norm which satisfies the triangle inequality):

E[(δ̂1(X)− η(X))2]1/2

≤
d ·
{
E[(π̂−1 − π−1)2]1/2 + E[(π̂1 − π1)2]1/2

}
+ 2

∑d
j=1 E[

(
δ̂

(j)
1 (Xj)− η(j)(Xj))

2]1/2

ηd0(πd−1
−1 + πd−1

1 )

We have

E[(π̂1 − π1)2] =
π1(1− π1)

n
≤ 1

n
,

and by the findings in the proof of Theorem 5.10 (with dimension d = 1),

E[
(
δ̂

(j)
1 (Xj)− η(j)(Xj))

2] ≤
8C2

gC
2
W

c2
g

·
{ σ2

nh
+ L2 · h2 + L2 · h

2

nh

}
+ 32n−1.

Summarizing the results into (56), we obtain that there exists a universal constant c > 0
such that

R(f̂n,h)−R(f ∗) ≤ cd

ηd0(πd−1
−1 + πd−1

1 )
·
{CgCW

cg
·
{ σ2

nh
+ L2 · h2 + L2 · h

2

nh

}1/2
+ n−1/2

}
.

With h = n−1/3, we obtain that

γnaiv(n, h) ≈ d

ηd0(πd−1
−1 + πd−1

1 )
· n−1/3.

Contrary to the kernel classification algorithm from Definition 5.8 which has a rate

≈ n−
1
d+2 , we here obtain a convergence rate n−1/3 which does not suffer from the curse

of dimension. The main reason is that the model assumption allows us to reduce the
d-dimensional estimation problem to d one-dimensional estimation problems. However,
due to our rough upper bounds the rate suffers from a pre-factor which is exponential
in d.

Remark 5.14 (Regarding model assumption and additive structure). The model as-
sumption of Definition 5.11 for two classes Y = {−1,+1} implies that there exist mea-
surable functions h(j) : R→ R, j = 1, ..., d such that

log
( η(x)

1− η(x)

)
=

d∑
j=1

h(j)(xj). (61)
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Thus, the optimal decision regions have the form

∂Ω1 = {x ∈ X : η(x) >
1

2
} = {x ∈ X : log(

η(x)

1− η(x)
) > 0}

= {x ∈ X :
d∑
j=1

h(j)(xj) > 0}.

This means that the decision boundary is described by the level set of a function with
an additive structure: The function is a sum of functions which only depend on one
coordinate of x. In the following two chapters, we will investigate these structures in
more detail.
Proof of (61): It holds that

η(x) =
π1g1(x)

π1g1(x) + π−1g−1(x)
,

thus

log
( η(x)

1− η(x)

)
= log

( π1g1(x)

π−1g−1(x)

)
= log

( π1

π−1

)
+ log

( g1(x)

g−1(x)

)
Def. 5.11

= log
( π1

π−1

)
+

d∑
j=1

log
(g(j)

1 (xj)

g
(j)
−1(xj)

)
.

Now we can define h(j)(xj) := log(
g

(j)
1 (xj)

g
(j)
−1(xj)

), j = 2, ..., d and h(1)(x1) := log( π1

π−1
) +

log(
g

(1)
1 (x1)

g
(1)
−1(x1)

).

5.4 Exercises

Task 20 (Analysis of the kernel regression algorithm). In this task we investigate the
excess Bayes risk (with respect to L(y, s) = (y− s)2, R(f) = EL(Y, f(X))) of the kernel
regression algorithm

f̂(x) =

∑n
i=1W

(
Xi−x
h

)
Yi∑n

i=1 W
(
Xi−x
h

)
in regression problems Y = f ∗(X) + ε. We show that

E[(f̂(x)− f ∗(x))2] ≤ γ(n, h) (∗)

with a deterministic rate γ(n, h).
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1. Show that (*) implies ER(f̂)−R(f ∗) ≤ γ(n, h).

Suppose that W : Rd → [0,∞) is a kernel function and f ∗ ∈ F(L) = {f : X →
R,∀x, x′ : |f(x)−f(x′)| ≤ L‖x−x′‖∞}. Let g ∈ F(L) be a density of X with respect to
the Lebesgue measure on X . Suppose further that there exist constants cg > 0, Cg ≥ 1
with cg ≤ g(x) ≤ Cg. Let A(x) := {|ĝ(x)− g(x)| ≤ cg

2
}, where

ĝ(x) =
1

n

n∑
i=1

Wh(Xi − x), Wh(z) :=
1

hd
W (

z

h
).

In the following, we investigate the following two summands separately:

E[(f̂(x)− f ∗(x))2] = E[(f̂(x)− f ∗(x))2
1A(x)] + E[(f̂(x)− f ∗(x))2

1A(x)c ].

Analysis of the second summand:

(b) Show that if |ε1| ≤ Cε with some constant Cε > 0, then we have

E[(f̂(x)− f ∗(x))2
1A(x)c ] ≤ (2‖f ∗‖∞ + Cε)

2P(A(x)c).

(c) Suppose that ‖W‖∞,
∫
W (u)2du,

∫
W (u)‖u‖∞du ≤ CW with some constant CW ≥

1. Show that

P
(
|ĝ(x)− Eĝ(x)| ≥

√
2tCgCW
nhd

+
tCW
3nhd

)
≤ 2e−t.

Hint: Apply Bernstein’s inequality: For i.i.d. random variables Zi with |Zi| ≤M ,
EZi = 0 and Var(Zi) ≤ V 2 it holds that P(|

∑n
i=1 Zi| ≥

√
2tnV + tM

3
) ≤ 2e−t.

(d) Suppose that
∫
W (x)‖x‖∞dx ≤ CW . Show that Eĝ(x)− g(x) ≤ LCW · h.

(e) Conclude from (c), (d): If

cg
4LCW

≥ h ≥ max{128CgCW
c2
g

,
8CW
3cg
}1/d ·

( log(n)

n

)1/d

then it holds that P(A(x)c) ≤ 2n−1.

(f) Conclude with (b):

E[(f̂(x)− f ∗(x))2
1A(x)c ] ≤ 2(2‖f ∗‖∞ + Cε)

2n−1.

Analysis of the first summand: Define

m̂(x) :=
1

n

n∑
i=1

Wh(Xi − x)Yi,

then one has f̂ = m̂
ĝ

.
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(g) Show that

E[(f̂(x)− f ∗(x))2
1A(x)] ≤

4

c2
g

E[|m̂(x)− f ∗(x)ĝ(x)|2].

(h) Show that

E[|m̂(x)− f ∗(x)ĝ(x)|2] ≤ 2

n
Var

(
Wh(X1 − x){f ∗(X1)− f ∗(x)}

)
+2E

[
Wh(X1 − x){f ∗(X1)− f ∗(x)}

]2
+

2

n
Var

(
Wh(X1 − x)ε1

)
.

Hint: First use the decomposition Yi − f(x) = {f(Xi) − f(x)} + εi, then apply
(a+ b)2 ≤ 2a2 + 2b2.

(i) Show that
1

n
Var(Wh(X1 − x)ε1) ≤ σ2CgCW

nhd
.

(j) Show that

E
[
Wh(X1 − x){f ∗(X1)− f ∗(x)}

]2 ≤ (LCgCW )2h2.

(k) It holds (without proof) that 1
n

Var
(
Wh(X1−x){f ∗(X1)−f ∗(x)}

)
≤ L2CgCW

h2

nhd
.

Combine the above results to show that

E[(f̂(x)− f ∗(x))2
1A(x)] ≤

8C2
WC

2
g

c2
g

{ σ
2

nhd
+ L2h2 + L2 h

2

nhd
}.

(l) Provide an upper bound for E[(f̂(x)− f ∗(x))2].
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6 Regression and classification trees; Boosting

In this chapter we investigate both regression and classification problems with a machine
learning algorithm based on so-called trees. Trees are nonparametric estimators in the
sense that their construction does not rely on a specific parametric model assumption
on f ∗.

6.1 Binary trees

Basic construction approach: The observation space X is split successively in two
halves along a specific coordinate j ∈ {1, ..., d} which is selected beforehand (two halves
→ binary trees). This construction produces a partition X =

⋃
Ak of X . On this parti-

tion, we can define a decision rule which assigns to each element Aj a constant value y.

The successive partitioning of the space X along a coordinate can be formalizes with a
tree structure. The first split corresponds to the root of the tree. There start two edges
from the root which correspond to the two parts in which the space was split, and so
on. We first recall the definition of a tree as a special case of a graph.

A directed graph G = (V,E) is a tuple, where E is a set (the elements are called vertices)
and E ⊂ V × V (these elements are called edges). For (v, w) ∈ E we write v → w (’v
points to w’).

Definition 6.1 (Tree). A tree T = (VT , ET ) is a directed graph with the following
properties:

• T is acyclic, that is, there exist no sequence v1, ..., vn ∈ VT of vertices with v1 →
v2 → ...→ vn → v1 (there are no ’circles’)

• From each vertex there starts either no edge (a so-called leaf ) or exactly two edges
(a so-called inner vertex ).

• For each vertex besides one (the so-called root, denoted by v0 ∈ VT ) there exists
exactly one other vertex which points on it.

The set of all leafs is denoted with BT , the number of leafs is abbreviated as |T | := |BT |,
where | · | denotes the cardinality of a set.

We now define regression and classification trees.
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Definition 6.2 (Regression and classification trees). Let T be a tree. Suppose that for
each vertex v ∈ VT\BT (inner vertex) there exist

• j(v) ∈ {1, ..., d} (the so-called split index ) and

• s(v) ∈ R (the so-called split point).

Suppose that for each leaf v ∈ BT there exists y(v) ∈ Y . Then T is called CART
(classification and regression tree). T is called regression tree if Y = R or classification
tree if Y = {1, ..., K}.

Given a CART T , one can define a decision rule based on T as follows:

Definition 6.3. Let T be a CART with root v0. Define A(v0) := X . Recursively, we
define the following quantities.

• If A(v) is already defined for a vertex v ∈ VT\BT , then let v1, v2 ∈ VT be the
vertices with v → v1, v → v2. Define

A(v1) := {x ∈ A(v) : xj(v) < s(v)}, A(v2) := {x ∈ A(v) : xj(v) ≥ s(v)}.

Then, A(T ) := {A(v) : v ∈ BT} is a partition of X . The decision rule corresponding to
T is defined by

fT : X → Y , fT (x) :=
∑
v∈BT

y(v) · 1A(v)(x). (62)

Simply speaking, we define fT in such a way that on A(v), attains the value y(v). Since⋃
v∈BT A(v) = X is a partition of X , (62) should not be understood as a sum but as a

case distinction.

Note that the topological closure of the set of all CARTs is equal to the set {f : X →
Y messbar} since every measurable function can be approximated by piecewise constant
functions. Thus, we have to reduce the size of the set of all CARTs. We do this by
restricting the number of splits in each coordinate and the location of the split points.

6.2 Dyadic trees

For simplicity, we restrict ourselves to the cube X = [0, 1]d. Additionally, we will only
allow the split points to be exactly in the middle of the cuboid which represents the
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actual subspace.

Definition 6.4. A CART T is called dyadic if for each v ∈ VT\BT the following holds:

If A(v) =
∏d

j=1[aj(v), bj(v)], then s(v) :=
aj(v)(v)+bj(v)(v)

2
.

In the following, we consider the following subset of CARTs.

Definition 6.5. Let S ∈ N, and

TS := {T is a dyadic CART and along one path from

root to leaf, each coordinate is split at most S times}.

Let (X, Y ) be a regression or classification problem (Loss function L(y, s) = (y − s)2 or
L(y, s) = 1{y 6=s}). To obtain a suitable tree and to avoid overfitting, we will additionally
penalize the size of a tree via the number of leafs |T |.

Definition 6.6 (Dyadic CART algorithm). Let S ∈ N, λ > 0, and

T̂n,λ :∈ arg min
T∈TS

{
R̂n(fT ) + λ · |T |

}
, R̂n(f) :=

1

n

n∑
i=1

L(Yi, f(Xi)).

Then f̂n,λ := fT̂n,λ is called dyadic CART algorithm.

Remark: As long as S is small enough, the global optimizer in Definition 6.6 is com-
putable. As we will see below in Theorem 6.9, for classification we need S ≥ d log2(n)

d
e to

obtain a good upper bound for the excess Bayes risk. There exist procedures which can
compute T̂n,λ in ≤ c ·ndSd log(nSd) steps (c a universal constant, cf. [3], Proposition 1).

We now provide a theoretical result for classification with L(y, s) = 1{y 6=s}, Y = {−1,+1}.
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Theorem 6.7 (Oracle inequality for dyadic classification trees). Let X = [0, 1]d. Sup-
pose that there exists η0 > 0 such that |η(x)− 1

2
| ≥ η0 for all x ∈ X . Then there exists

a universal constant c > 0 such that for all t ≥ 0 the following assertion holds: If

λ ≥ c
log(d) + t

η0n
,

then
P
(
R(f̂n,λ)−R(f ∗) ≥ 2 inf

T∈TS

{
R(fT )−R(f ∗) + λ · |T |

})
≤ e−t.

The proof is postponed to Subsection 6.3.
Remarks:

• The assertion in Theorem 6.7 is an ’oracle inequality’. It states that with high
probability, R(f̂n,λ) − R(f ∗) behaves at most twice as bad as the best possible
decision rule on TS (which knows the true distribution) plus an additional penal-
ization term.

• To derive a convergence rate for R(f̂n,λ)−R(f ∗), it is left to upper bound R(fT )−
R(f ∗) by introducing a model assumption.

• We will see that an oracle inequality is a very strong result on its own: The corre-
sponding machine learning algorithm fulfills an optimality assumption ’uniformly’
over all possible model assumptions. If we then pose a specific model assumption,
we directly obtain a convergence rate. The important point is tht the machine
learning algorithm does not make use of this model assumption but has this rate
anyway. Note that the kernel estimators presented in Chapter 5 can not be written
as empirical risk minimizers. They do not allow for such an oracle inequality.

Definition 6.8 (Model assumption: classification tree). Let µ denote the Lebesgue
measure on Rd. Suppose that there exist constants cµ, cbox > 0 such that:

(a) For all A ⊂ X , P(X ∈ A) ≤ c0µ(A).

(b) For all m ∈ N, the optimal decision boundary ∂Ω∗1 intersects at most cboxm
d−1 of

the md cubes in which the space X = [0, 1]d can be decomposed.

Remarks:
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• Assumption (a) asks that there is not particular subset of X where much more
training samples are realized. A tree with restricted depth (and thus only a re-
stricted number of splits) could not represent such a distribution well.

• Assumption (b) provides an upper bound on the complexity of the optimal decision
boundary. If for instance the optimal decision boundary ∂Ω∗1 = {(x1, ..., xd−1, g(x1, ..., xd−1)) :
x1, ..., xd−1 ∈ [0, 1]} is a surface with g ∈ F(L) (Lipschitz continuous, cf. (53)),
then we have

cbox ≤ L+ 1.

Proof: If X = [0, 1]d is partitioned intomd cubes with length 1
m

, then (x1, ..., xd−1, 0)
runs throughmd−1 cubes. By running through one cube, all arguments of g(x1, ..., xd−1)
change by at most 1

m
. Thus, g varies by at most L

m
. Thus, the decision boundary

can only run through at most (L+ 1) ·md−1 cubes in the direction of xd.

Theorem 6.9 (Convergence rate of a dyadic classification tree). Suppose that the model
assumption in Definition 6.8 holds. Suppose that there exists η0 > 0 with |η(x)− 1

2
| ≥ η0

for all x ∈ X . Let m = 2S. Then it holds that

inf
T∈TS

{
R(fT )−R(f ∗) + λ · |T |

}
≤ cµcboxm

−1 + λmd.

If S ∈ N, S ≥ log2(n)
d+1

and λ = c log(2d)+t
η0n

, then we have

inf
T∈TS

{
R(fT )−R(f ∗) + λ · |T |

}
≤ (2cµcbox +

c

η0

(log(2d) + t)) · n−
1
d+1 .

Proof. This is left as an exercise.

Remark: With a more detailed argumentation, one can achieve even λmd−1 instead of
λmd. The above result shows that trees are able to achieve the (bad) nonparametric

rate n−
1
d+1 which suffers from the curse of dimension.

However, the oracle inequality can now be used to prove better convergence rates under
stronger assumptions on the underlying distribution of X. We show this behavior on a
very simple example that X is located in a s-dimensional subspace [0, 1]s×{0}d−s of Rd.

Definition 6.10 (Model assumption: classification tree, reduced dimension). Let µs
denote the Lebesgue measure on Rs. Suppose that there exist constants cµ, cbox > 0
such that
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(a) For all A ⊂ [0, 1]s × {0}d−s, P(X ∈ A) ≤ c0µs(A).

(b) For all m ∈ N, the decision boundary ∂Ω∗1 intersects at most cboxm
s−1 of the md

cubes in which the space X can be partitioned.

In (a) we ask that X ∈ [0, 1]s × {0}d−s a.s.; accordingly in (b) we ask that the optimal
decision boundary is only (s− 1)-dimensional. Similar to Theorem 6.9, we obtain under
the model assumption of Definition 6.10 that

inf
T∈TS

{
R(fT )−R(f ∗) + λ · |T |

}
≤ (2cµcbox +

c

η0

(log(2d) + t)) · n−
1
s+1 .

First note that the convergence rate now is of order n−
1
s+1 which is much better than

n−
1
d+1 if s � d. Second, note that the tree algorithm does not need to know during

construction that this model assumption holds true; it is obtained in the same way as
always. Of course, there is a price to pay to obtain this property: The cost for this
adaptation is hidden in the term λ in Theorem 6.7. The original dimension d enters the
convergence rate through the factor log(2d) (independent of what model assumption we
use). This is still a remarkable result: It shows that the original dimension only enters
the convergence rate logarithmically, so the ’price’ of a tree to adapt to a more specific
structure is very small compared to the original dimension of the space.

6.3 Proof of Theorem 6.7

In the following, we will abbreviate f̂ = f̂n,λ, T̂n,λ = T̂ .
Important observation: The minimization problem of a dyadic tree can be decom-
posed as follows: Let A(T ) = {A(v) : v ∈ VT} be the partition induced by a tree T ,
and

A := {A(T ) : T ∈ TS}
the set of all partitions which can be induced by trees of TS. For one specific partition
A ∈ A, let

FA = {fA,y(x) :=
∑
A∈A

yA · 1A(x) | yA ∈ Y für A ∈ A}.

be the set of all decision rules on this partition. Then we have

min
T∈TS
{R̂n(fT ) + λ · |T |} = min

A∈A
min
f∈FA

{
R̂n(f) + λ · |A|

}
= min

A∈A

{
min
f∈FA

R̂n(f) + λ · |A|
}
.

In particular, f̂n,λ has a representation of the form

f̂ = fÂ,ŷ, Â = A(T̂ ), ŷ ∈ Y |A|. (63)
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This shows that minimization over dyadic tree decision rules can be interpreted as a
two-step minimization problem:

• First, we minimize over all possible partitions which can be generated by dyadic
trees from TS,

• second, in parallel one minimizes over the values which the trees attain on these
partitions.

Given a partition, the second minimization problem can be solved explicitly (this is left
as an exercise). For the proof, we do not need this explicit representation but only the
minimization property.

Step 1: Derivation of a basic inequality. Let

f0 := fT0 , T0 :∈ arg min
T∈TS

{
R(fT )−R(f ∗) + λ|T |

}
.

Similar to (63), define A0 = A(T0). We now decompose the excess Bayes risk into
estimation and approximation error as follows:

R(f̂)−R(f ∗) ≤ {R(f̂)−R(f0)}+ {R(f0)−R(f ∗)} (64)

In the following, we consider the estimation error

R(f̂)−R(f0) = {R̂n(f̂)− R̂n(f0)}+
{
R(f̂)− R̂n(f̂)− (R(f0)− R̂n(f0))

}
.

Recall the general proof technique from the SVM section. It holds that

R(f̂)−R(f0) ≤ λ|A0| − λ|Â|+ Vr,Â(f0) · (r2 +D(f̂ , f0)2), (65)

where r > 0, A ∈ A and

Vr,A(f0) := sup
f∈FA

{
R(f)− R̂n(f)− (R(f0)− R̂n(f0))

}
r2 +D(f, f0)2

,

and D(·, ·) is a distance measure which we still have to define. To obtain upper bounds
in (65), we therefore again have to derive two intermediate results:

• A concentration inequality for Vr,A(f0), and

• a margin property for D(f, f ∗) with respect to R(f)−R(f ∗).

In the following, we use the distance

D(f, f ∗) := E[(L(Y, f(X))− L(Y, f ∗(X)))2]1/2.

The overall reason is that V naturally includes L(Y, f(X)) as summands and therefore
its variance can be controlled by bounding D(f, f ∗). We have the following margin
property. Recall η(x) = P(Y = 1|X = x).
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Lemma 6.11. Suppose that there exists η0 > 0 such that |η(x)− 1
2
| ≥ η0 for all x ∈ X

(this corresponds to the noise condition with q =∞). Then, for all f : X → R it holds
that

D(f, f ∗)2 ≤ 1

2η0

{R(f)−R(f ∗)}.

Proof. It holds that f(X) = f ∗(X) ⇒ L(Y, f(X)) = L(Y, f ∗(X)), and |L(y, f(x)) −
L(y, f ∗(x))| ≤ 1. Thus we have

D(f, f ∗)2 = E[(L(Y, f(X))− L(Y, f ∗(X)))2] ≤ E[1{f(X)6=f∗(X)}] = P(f(X) 6= f ∗(X)).

As in the proof of Theorem 3.21 (recall η(x) > 1
2
⇐⇒ f ∗(x) = 1 and δ(x) < 0 ⇐⇒

f(x) = −1), it holds that

R(f)−R(f ∗) = E
[

(2η(X)− 1)︸ ︷︷ ︸
≥2η0

1{f∗(X)=1,f(X)=−1} + (1− 2η(X))︸ ︷︷ ︸
≥2η0

1{f∗(X)=−1,f(X)=1}
]

≥ 2η0E[1{f∗(X)6=f(X)}] = 2η0P(f ∗(X) 6= f(X)).

Putting these inequalities together yields the result.

Now we show a concentration inequality for Vr,A(f0). As in the proof of the SVM
algorithm, we start with upper bounds for the auxiliary term

Zr,A(f0) := sup
f∈FA,D(f,f0)≤r

∣∣R(f)− R̂n(f)− (R(f0)− R̂n(f0))
∣∣.

Contrary to the SVM case, the set of functions FA in the supremum is finite which
allows for different proof techniques. Here, we use a Bernstein inequality and a direct
implication for expectations of finite suprema (cf. [18], Lemma 19.33, the derivation is
left as an exercise).

Theorem 6.12. Let Z1, ..., Zn be i.i.d. random variables with values in R. Suppose
that there exist σ2,M > 0 such that EZ1 = 0, Var(Z1) ≤ σ2 and |Z1| ≤ M . Then it
holds that

P
( n∑
i=1

Zi ≥ t
)
≤ exp

(
− t2

2nσ2 + 2Mt/3

)
.
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Theorem 6.13 (Maximal inequality for finite function classes). Let Z1, ..., Zn be i.i.d.
random variables on X ⊂ Rd. Let G ⊂ {g : X → R measurable} be a finite class of
functions. Suppose that there exist σ2,M > 0 such that for all g ∈ G, it holds that
Eg(Z1) = 0, Var(g(Z1)) ≤ σ2 and ‖g‖∞ ≤M . Then

E sup
g∈G

∣∣ n∑
i=1

g(Zi)
∣∣ ≤ 4 ·

{
σ
√
n
√

log(|G|+ 1) +M · log(|G|+ 1)
}
.

Using these results, we obtain the following upper bound for EZr,A(f0).

Lemma 6.14. Let |A| ≥ 1. For r ≥ 2 log(2)|A|
n

, it holds that

EZr,A(f0) ≤ 8

√
|A|
n
· r.

Proof. We use that Zr,A(f0) has a representation

Zr,A(f0) = sup
g∈G

n∑
i=1

g(Xi, Yi),

where

G =
{
g(x, y) =

1

n

{
EL(Y, f(X))−L(y, f(x))− (EL(Y, f0(X))−L(y, f0(x)))

}
: f ∈ FA

}
.

Moreover, it holds that |L(y, s)| ≤ 1, thus |g(x, y)| ≤ 4
n

and

Var(g(X, Y )) ≤ E[(L(Y, f(X))− L(Y, f0(X)))2]

n2
=
D(f, f0)2

n2
≤ r2

n2
.

By Theorem 6.13, we conclude that

EZr,A(f0) ≤ 4 ·
{√ log(|FA|+ 1)r2

n
+

log(|FA|+ 1)

n

}
.

It holds that |FA| = 2|A| (for each A ∈ A, one can select from two classes yA ∈ {−1,+1})
⇒

log(|FA|+ 1) = log(2|A| + 1)
|A| ≥1

≤ 2 log(2)|A|.
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Inserting this result into the upper bound above, we end up with

EZr,A(f0) ≤ 4 ·
{√2 log(2)|A|r2

n
+

2 log(2)|A|
n

} r2≥ 2 log(2)|A|
n

≤ 8

√
|A|
n
· r.

Note that the condition r2 ≥ 2 log(2)|A|
n

is taken from our assumption and was used to
guarantee that both terms are of the same size.

As in the proof of the SVM (Lemma 4.28), we now use the peeling device and a
Talagrand-type inequality to obtain the following statement for Vr,A(f0) from Zr,A(f0).
Note that here, |L(y, s)| ≤ 1.

Lemma 6.15. Let |A| ≥ 1. For r ≥ 2 log(2)|A|
n

, it holds that

EVr,A(f0) ≤ 40

√
|A|
n
· 1

r
.

For t ≥ 0, we have

P
(
Vr,A(f0) ≥ 48

√
|A|
n
· 1

r
+

√
2t

nr2
+

22t

nr2

)
≤ e−t.

In particular, for every N ∈ N the following statement holds. With rA,t := c(N) ·
{ |A|
nη0

+
1
η2

0
· t
n

}
, where c(N) is some universal constant only depending on N , we have

P
(
VrA,t,A(f0) ≥ η0

N
) ≤ e−t.

Proof. The first two inequalities can be shown in the same way as in Lemma 4.28 and
Lemma 4.30 (SVM). We only have to show that the given r = rA,t satisfies the inequality

η0

N
≥ 48

√
|A|
n
· 1

r
+

√
2t

nr2
+

22t

nr2
.

The inequality above is implied by

η0

3N
≥ 48

√
|A|
n
· 1

r
,

η0

3N
≥
√

2t

nr2
,

η0

3N
≥ 22t

nr2
,

and these inequalities are again implied by

r2 ≥ max
{

1442N2 |A|
nη0

,
18N2t

nη2
0

,
66Nt

nη0

}
.

This is implied by the choice r = rA,t if c(N) is chosen large enough.
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Step 2: Definition of a ’nice’ event E. At the moment, we have shown the basic
inequality (65). To upper bound Vr,Â(f0) we have to define an event which allows to
upper bound Vr,A uniformly over all A ∈ A.

For t > 0 let t(|A|) denote a (still unknown) function dependent on |A|, t. We will derive
its concrete form in a second. Define

E :=
⋂
A∈A

{VrA,t(|A|),A(f0) ≤ η0

N
}

with rA,t := c(N) · { |A|
nη0

+ 1
η2

0
· t
n
} as given in Lemma 6.15. Then we have

P(Ec) ≤ P
( ⋃
A∈A

{VrA,t(|A|),A(f0) ≥ η0

N
}
)
≤
∑
A∈A

P
(
VrA,t(|A|),A(f0) ≥ η0

N

)
≤

∑
A∈A

e−t(|A|) =
∞∑
D=1

∑
A∈A:|A|=D

e−t(D) =
∞∑
D=1

e−t(D) · |{A ∈ A : |A| = D}|
!

≤ e−t.

It is our aim to satisfy the last inequality by choosing a suitable function t(|A|). To
do so, we have to upper bound the second to last term in the above inequality. The
number of binary trees, which produce a partition with D + 1 elements corresponds to

the (D+1)-th Catalan number 1
D+1

(
2D
D

)
(note that we count only the trees themselves,

not any assignment with split coordinates j(v)). A tree with (D+1) leafs has D internal
vertices. For every internal vertex, we can choose from d dimensions. Then we have

|{A ∈ A : |A| = D}| ≤ dD · 1

D + 1

(
2D
D

)
.

Stirling’s formula (1 ≤ k!√
2πk( k

e
)k
≤ 2 for any k ∈ N) yields the upper bound

(
2D
D

)
=

(2D)!

(D!)2
≤

2
√

4πD(2D
e

)2D

(
√

2πD(D
e

)D)2
=

2√
πD
· 22D.

Therefore, we get
|{A ∈ A : |A| = D}| ≤ 2 · (4d)D.

We may therefore choose t(D) = 2D log(4d) + t. Then we have

P(Ec) ≤
∞∑
D=1

e−t(D) · |{A ∈ A : |A| = D}| = e−t
∞∑
D=1

(4d)−2D · 2 · (4d)D

= 2e−t
∞∑
D=1

(4d)−D ≤ 2e−t
(4d)−1

1− (4d)−1
≤ e−t.
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Step 3: Derivation of an upper bound on the excess Bayes risk. The margin
property of Lemma 6.11 implies

D(f̂ , f0)2 ≤ 2D(f̂ , f ∗)2 + 2D(f0, f
∗)2 ≤ 1

η0

[
{R(f̂)−R(f ∗)}+ {R(f0)−R(f ∗)}

]
.

Plugging this into (64) and (65) yields on the event E:

R(f̂)−R(f ∗) ≤ λ|A0| − λ|Â|+
η0

N
· r2
Â,t(|Â|) +N−1{R(f̂)−R(f ∗)}

+(1 +N−1){R(f0)−R(f ∗)}.

Rearranging terms yields

R(f̂)−R(f ∗) ≤ 1

1−N−1

[
(1 +N−1){R(f0)−R(f ∗)}+ λ|A0|−λ|Â|+

η0

N
· r2
Â,t(|Â|)

]
We have to eliminate the non-deterministic terms from the underlined expression above.
It holds that

η0

N
r2
Â,t(|Â|) =

C(N)

N
· { |A|

n
+

1

η0

· 2|A| log(4d) + t

n
} ≤ 4C(N)

N
· log(d) + t

η0n
|A|,

therefore we should choose λ ≥ 4C(N)
N
· log(d)+t

nη0
. Then for N large enough (choose c in λ

accordingly):

R(f̂)−R(f ∗) ≤ 1

1−N−1

[
(1+N−1){R(f0)−R(f ∗)}+λ|A0|

]
≤ 2 inf

T∈TS

{
R(fT )−R(f ∗)+λ|T |

}
.

6.4 Boosting

The original idea of Boosting was introduced for classification problems, but it can be
extended to regression problems. Here, we consider only classification problems with
two classes, that is,

X ⊂ [0, 1]d, Y ∈ {−1,+1}, L(y, s) = 1{y 6=s}.

Approach: The starting point of the procedure is to choose a (relatively small) class of
base decision rules C ⊂ {f : X → Y measurable}. A typical example could be C = C1,
where

C1 = {fT : T CART with depth 1, that is, |T | = 2}
= {x 7→ y1 · 1{xj<s} + y2 · 1{xj≥s} : y1, y2 ∈ Y , j ∈ {1, ..., d}, s ∈ R} (66)

the function class of so-called tree stumps or decision stumps.
Obviously, the decision rules f coming from C are not suitable to approximate more
complex Bayes rules f ∗. The idea is to extend C successively to obtain better decision
rules. This is done as follows.
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1. Find a classifier δ̂(1) ∈ C which explains (Xi, Yi), i = 1, ..., n as good as possible.

2. Afterwards, find ĝ(2) ∈ C which tries to explain in particular those data points
(Xi, Yi) which were not well explained by δ̂(1).

3. Combine δ̂(2) := δ̂(1) + β̂2 · ĝ(2) with a suitably chosen scaling factor β̂2 ≥ 0. From
intuition it should hold that β̂2 ∈ [0, 1] since the second classifier ĝ(2) shall only
correct the first classifier δ̂(1), not replace its result.

4. By combining both classifiers, in general δ̂(2) is no longer a function with values
in Y . Instead, δ̂(2) is an indicator how sure we are to decide for one of the classes
y ∈ Y = {−1,+1}. An improved classifier which combines the ’knowledge’ from
both base classifiers δ̂(1), ĝ(2) is given by

f̂ (2)(x) := sign(δ̂(2)(x)).

5. Repeat the steps (2.)-(4.) for m ∈ N with ĝ(m) and δ̂(m−1), that is,

f̂ (m)(x) := sign(δ̂(m)(x)), δ̂(m) := δ̂(m−1) + β̂m · ĝ(m).

Then, f̂ (m) then combines the ’knowledge’ of m classifiers.

In the literature, such methods which (successively) improve or combine base classifiers
are called ensemble learning methods. The method presented here is called Boosting : A
base classifier with weak quality is boosted in the way that many replications of it are
summarized to a strong ’comitee’. The hope is that if the procedure is stopped at the
right time, overfitting is avoided.

If we define β̂1 = 1, ĝ(1) := δ̂(1), then the procedure produces classifiers of the form

f̂ (m)(x) = sign(δ̂(m)(x)), δ̂(m)(x) :=
m∑
j=1

β̂j · ĝ(j)(x), ĝ(j) ∈ C, β̂j ≥ 0.

Therefore, δ̂n is an element of the following function class.

Definition 6.16 (Function class of boosting decision rules). Let C ⊂ {f : X →
Y measurable} with C = −C. Define

∆ := {x 7→ δβ,g :=
N∑
j=1

βj · gj(x) : N ∈ N,∀j ∈ {1, ..., N} : gj ∈ C, βj ≥ 0}.
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Since we assume that the weights βj are nonnegative, we ask for C = −C := {−f : f ∈ C}
so that the same decision rules are available in direction of both classes −1 and +1.

To include a suitable stopping rule, we introduce a quantity which measures the sum of
weights which are needed to represent a specific δ ∈ ∆:

Definition 6.17.

‖δ‖1 := inf{
N∑
j=1

βj : δβ,g ∈ ∆ with δβ,g = δ}.

Since δ has several representations of the form δ = δβ,g ∈ ∆, we have to take the
infimum so that ‖ · ‖1 is well-defined and is a norm (in particular, ‖ · ‖1 satisfied the
triangle inequality).

6.4.1 The exact boosting algorithm

Up to now we have not described how the specific βj, ĝ
(j)
n are obtained in the above

representation of δ̂n. We now present a formal definition.

Definition 6.18 (The exact boosting algorithm). Let L̃ : Y × R → R≥0 be a loss
function. For λ > 0 and some non-increasing P : [0,∞)→ [0,∞), define

δ̂n :∈ arg min
δ∈∆

{
R̃n(δ) + λ · P (‖δ‖1)

}
, R̃n(δ) :=

1

n

n∑
i=1

L̃(Yi, δ(Xi)).

Then
f̂n(x) := sign(δ̂n(x))

is called boosting algorithm with respect to the base class C.

We still have to define the function P . We will see later that for strong theoretical
results, P has to depend on the loss function L̃.
In practice, δ̂n can not be computed exactly since ∆ is too large. Instead, one uses
approximative solutions. One possibility is shown in the next subsection. Note that this
is the first time in this lecture that we will have a ’gap’ between the theoretical result
and the algorithm used in practice. For more complex algorithms, this is quite common
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in recent articles in statistics for machine learning algorithms. It is also current research
to close these gaps.
However, note that even the analysis of the exact boosting algorithm can give valuable
hints how to choose P and which convergence rates might be obtained for different
choices of the base class C.

6.4.2 The approximated boosting algorithm

In practice, the optimization problem in Definition 6.18 is solved iteratively by the
following procedure.

Definition 6.19. Let δ̂(0) := 0. For m ∈ N, compute

(β̂m, ĝ
(m)) :∈ arg min

β≥0,g∈C
R̃n(δ̂(m−1) + β · g), (67)

and put δ̂(m) := δ̂(m−1) + β̂m · ĝ(m). Then, define

δ̂≈n :∈ arg min
m∈N

{
R̃n(δ̂(m)) + λ · P (‖δ̂(m)‖1)

}
.

The classifier f̂≈n (x) = sign(δ̂≈n (x)) is called the approximated boosting classifier.

In the above definition, one first derives a sequence of δ̂
(m)
n of discriminant functions.

Out of this sequence a final discriminant function is selected by solving an optimization
problem which includes the penalization term P (‖δ̂(m)‖1.

For ’small’ classes C, the optimization problem in (6.19) can be solved exactly in practice.
Note that the problem looks different for different loss functions L̃. In principle one may
use each loss function; however there are several standard choices which lead to well
interpretable (in view of the weights βm) and also well computable algorithms. We now
present two of these choices.
Let L̃(y, s) = φ(−ys) with some increasing function φ ∈ {φ1, φ2}, where

φ1(x) = ex, φ2(x) = log(1 + ex).

L̃ corresponding to φ1 is called exponential loss, L̃ corresponding to φ2 is called logistic
loss.
We now investigate the optimization problem (67) for these loss functions.
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Exponential loss φ = φ1: For β ≥ 0, g ∈ C, we have

R̃n(δ̂(m−1) + β · g)

=
1

n

n∑
i=1

L̃(Yi, δ̂
(m−1)(Xi) + β · g(Xi))

=
1

n

n∑
i=1

exp
[
− Yi · (δ̂(m−1)(Xi) + β · g(Xi))

]
=

1

n

n∑
i=1

w
(m)
i · exp(−βYig(Xi)), w

(m)
i := exp(−Yiδ̂(m−1)(Xi)),

g(Xi),Yi∈Y={−1,+1}
=

1

n

n∑
i=1

w
(m)
i

[
eβ1{Yi 6=g(Xi)} + e−β1{Yi=g(Xi)}

]
= (eβ − e−β) · 1

n

n∑
i=1

w
(m)
i 1{Yi 6=g(Xi)} + e−β · 1

n

n∑
i=1

w
(m)
i .

For each β > 0 it holds that

ĝ(m) := arg min
g∈C

R̃n(δ̂(m−1) + β · g) = arg min
g∈C

1

n

n∑
i=1

w
(m)
i 1{Yi 6=g(Xi)}. (68)

that is, the optimization problem can be solved with respect to g ∈ C independent of
the specific value of β ≥ 0. If ĝ(m) is computed, one has

β̂m := arg min
β≥0

R̃n(δ̂(m−1)+β·ĝ(m)) =
1

2
·log

(1− E(m)

E(m)

)
, E(m) :=

∑n
i=1 w

(m)
i 1{Yi 6=ĝ(m)(Xi)}∑n
i=1 w

(m)
i

.

In practice, the optimization problem (68) can be solved exactly for simple classes C.
Note that in (68), the optimization takes place with respect to a weighted 0-1 loss (no
longer an exponential loss).

Example 6.20 (Solution of (68) for decision stumps). Let C = C1 from Definition (66).
Then ĝ(m) can be obtained as follows: For fixed j ∈ {1, ..., d}, s ∈ R define

A1(j, s) := {x ∈ Rd : xj < s}, A2(j, s) := {x ∈ Rd : xj ≥ s}.

Then

Φ(j, s, y1, y2) :=
1

n

n∑
i=1

w
(m)
i 1{Yi 6=g(Xi)}

=
1

n

∑
i∈{1,...,n}:Xi∈A1(j,s)

w
(m)
i 1{Yi 6=y1} +

1

n

∑
i∈{1,...,n}:Xi∈A2(j,s)

w
(m)
i 1{Yi 6=y2}.
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We can minimize the sums in Φ(j, s, y1, y2) separately with respect to y1, y2:

ŷk(j, s) := arg max
y∈Y

∑
i∈{1,...,n}:Xi∈Ak(j,s),Yi=y

w
(m)
i k = 1, 2.

The solution can be interpreted as follows: ’Which class is (weighted with w
(m)
i ) most

common in Ak(j, s)?’. Therefore, it is left to solve

(ĵ, ŝ) := arg min
j∈{1,...,d},s∈R

Φ(j, s, ŷ1(j, s), ŷ2(j, s)).

The solution can be obtained by simply performing iterations over j ∈ {1, ..., d} and
s ∈ {X1:n, ..., Xn:n}, where X1:n < ... < Xn:n denotes the ordered values of X1j, ..., Xnj.
Due to the discrete structure, Φ(j, s, ŷ1(j, s), ŷ2(j, s)) attains all values on these pairs
(j, s).

We therefore obtain the following procedure to calculate δ̂(m) in Definition 6.19.

Lemma 6.21 (Computation of the approximated boosting algorithm with exponential

loss). Let δ̂(0) = 0, and w(1) = (w
(1)
1 , ..., w

(1)
n ) = (1, ..., 1). Then for m = 1, 2, 3, ..., it

holds that

1. Let ĝ(m) ∈ arg ming∈C
1
n

∑n
i=1w

(m)
i 1{Yi 6=g(Xi)},

2. E(m) :=

∑n
i=1 w

(m)
i 1{Yi 6=ĝ(m)(Xi)}∑n
i=1 w

(m)
i

,

3. β̂m := 1
2

log(1−E(m)
E(m)

),

4. w
(m+1)
i = w

(m)
i · exp

[
2β̂m1{Yi 6=ĝ(m)(Xi)} − β̂m

]
, i = 1, ..., n.

5. It holds that δ̂(m) = δ̂(m−1) + β̂mĝ
(m).

Remarks: The evolution of the weights is obtained as follows. With δ̂(m) = δ̂(m−1) +
β̂mĝ

(m), one has

w
(m+1)
i = exp(−Yiδ̂(m)(Xi)) = w

(m)
i exp(−Yiβ̂mĝ(m)(Xi))

−Yiĝ(m)(Xi)=2·1{Yi 6=ĝ(m)(Xi)}
−1

= w
(m)
i exp(2β̂m1{Yi 6=ĝ(m)(Xi)}) exp(−β̂m).
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This can be interpreted graphically: The training samples Xi, Yi which were misclassified
before are weighted more heavy in the next steps.

Logistic loss φ = φ2: In this case we can obtain a simple solution if we allow for another
approximation. Similar as in the exponential loss case, g(Xi), Yi ∈ Y = {−1,+1} implies

R̃n(δ̂(m−1) + β · g) =
1

n

n∑
i=1

log
(
1 + exp

[
− Yi · (δ̂(m−1)(Xi) + β · g(Xi))

])
=

1

n

n∑
i=1

{
log
(
1 + w

(m)
i eβ

)
− log

(
1 + w

(m)
i e−β

)}
· 1{Yi 6=g(Xi)}

+
1

n

n∑
i=1

log(1 + w
(m)
i e−β).

For a ≈ 0 and c ≥ 0, a Taylor approximation yields

log(1 + c+ a) ≈ log(1 + c) +
1

1 + c
· a.

With c = w
(m)
i , a = w

(m)
i (e±β − 1) ≈ 0 (for |β| � 1) we obtain that for |β| � 1,

R̃n(δ̂(m−1) + β · g) ≈ (eβ − e−β)
1

n

n∑
i=1

w
(m)
i

1 + w
(m)
i

1{Yi 6=g(Xi)} + e−β · 1

n

n∑
i=1

w
(m)
i

1 + w
(m)
i

+ const.

The only difference to Lemma 6.21 is therefore that in step (1.) and step (2.) one

makes use of the rescaled versions
w

(m)
i

1+w
(m)
i

of the weights instead of w
(m)
i itself. All other

statements stay similar (at least approximately). For the exponential loss, w
(m)
i can

grow arbitrarily large due to the successive multiplication in step (4.) and therefore

misclassified training samples can be weighted with a really large w
(m)
i which may lead

to overfitting after only few steps. In contrary, the logistic loss only weights with
w

(m)
i

1+w
(m)
i

which behaves much more regular. Roughly spoken, this enforces that boosting with
logistic loss is more stable and also more robust against outliers and overfitting.

6.5 Boosting: theoretical results

We now investigate the excess Bayes risk R(f̂n)−R(f ∗) of the exact boosting algorithm
of Definition 6.18. Here we discuss the results from [2] but with severe changes tue to
didactical reasons.
In the exercises and examples we have already shown the calibration condition and the
risk transfer formula for both exponential and logistic loss (for φ = φ1, see the exercises;
for φ = φ2, see Example 3.20, 3.22). Recall that η(x) = P(Y = 1|X = x).
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Lemma 6.22. For

• φ = φ1, put Cs = 1√
2
, δ∗(x) = 1

2
log( η(x)

1−η(x)
).

• φ = φ2, put CH = 2
√

2 log(2), δ∗(x) = log( η(x)
1−η(x)

).

Then it holds that for all δ : X → R,

R(sign(δ))−R(f ∗) ≤ 2CH{R̃(δ)− R̃(δ∗)}1/2.

If additionally there exists some η0 > 0 such that |η(x)− 1
2
| ≥ η0 for all x ∈ X , then

R(sign(δ))−R(f ∗) ≤ 2C2
H

η0

{R̃(δ)− R̃(δ∗)}.

We conclude that in both cases it is enough to investigate the excess Bayes risk R̃(δ̂n)−
R̃(δ∗) with respect to the loss L̃. Due to Lemma 6.22, the convergence rates transfer to
R(f̂n)−R(f ∗).
In the course of this section, we first discuss some results for general base function classes
C and loss functions L̃(y, s) = φ(−ys). We first introduce a quantity which measures
the size of function classes, the so-called covering numbers.

Definition 6.23 (Covering numbers). Let (E, ‖ · ‖) be a normed space and W ⊂ E a
subset. Then

• {v1, ..., vn} is called an ε-covering of W if W ⊂
⋃N
j=1Bε(vj) (or equivalently, ∀w ∈

W∃j ∈ {1, ..., N} : ‖w − vj‖ ≤ ε).

• N(ε,W, ‖ · ‖) := min{N : ∃ ε-covering with N elements} is called the covering
number of W .

To prove a result for the boosting algorithm, we make the following assumptions.

Definition 6.24 (Boosting: general assumptions). (A1) φ : R→ [0,∞) is convex, con-
tinuously differentiable, non-decreasing and satisfies φ′(0) > 0.

(A2) There exist ccov ≥ 1, V ≥ 1 such that the class C satisfies

N(ε, C, ‖ · ‖2,n,X) ≤ (
ccov
ε

)V ,
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where ‖g‖2,n,X :=
(

1
n

∑n
i=1 g(Xi)

2
)1/2

.

Remark: It is a relatively strong assumption to ask for a (deterministic) upper bound
on N(ε, C, ‖ · ‖2,n,X) since this quantity is still a random variable. In general we can only
ask that such a bound is independent of n if the functions in C are bounded. Here in
the lecture, we only consider the following example of tree decision rules (part 1 is left
as an exercise, for part 2 we refer to Corollary 10 in [9]):

Example 6.25 (Covering numbers for trees). • The class of decision stumps

C1 := {fT : T CART with depth 2}
= {x 7→ y11{xj<s} + y21{xj≥s} : j ∈ {1, ..., d}, s ∈ R, y1, y2 ∈ Y}

satisfies (A2) with V = 2b2 log2(2d)c, where c > 0 is a universal constant.

• Let K ∈ N. The class of trees

CS = {fT : T CART with K inner vertices}

satisfies (A2) with V = c1 ·K log2(Kd) where c, c1 > 0 are universal constants.
If we consider the class of trees which are allowed to split in each dimension S
times (cf. TS in Definition 6.5), then we have K = Sd.

We now show the following result. Note that this result asks for a special form of the
penalization term which then can be used in practice.

Theorem 6.26. Suppose that assumptions (A1),(A2) of Definition 6.24 hold. Define

P (
ρ

2
) := (ρφ′(ρ))

V
V+1φ(ρ)

1
V+1 + φ(ρ).

Then there exists a constant c > 0 only dependent on Cφ, φ
′(0), φ(0) and ccov (for Cφ,

see the Lemma 6.27 below). Then for all t ≥ 0 the following statement holds: If

λ ≥ c
{((V + 2)V 1/2

√
n

)V+2
V+1

+
t+ log(log2(n))

n

}
, (69)

then

P
(
R̃(δ̂n)− R̃(δ∗) ≥ 2 inf

δ∈∆

{
R̃(δ)− R̃(δ∗) + 2λP (‖δ‖1)

}
+ 4P (1)λ

)
≤ e−t.
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Remark: We shortly discuss the form of the penalization term (a more detailed discus-
sion is presented below):

• For φ(ρ) = log(1 + eρ) it holds that φ′(ρ) = eρ

1+eρ
≤ 1 and φ(ρ) ≤ 1 + ρ. Then it

holds that
P (
ρ

2
) ≤ c(ρ+ 1).

• If φ(ρ) = eρ, then we have P (ρ
2
) ≤ c(ρ+ 1)eρ.

For logistic loss, one therefore only has penalize with ‖δ‖1, where for exponential loss
one has to penalize with ≈ ‖δ‖1e

2‖δ‖1 .

We now summarize all necessary tools for the proof. The main task is again to proof a
concentration inequality for

Vr,ρ(δ0) := sup
δ∈B(ρ)

{R̃(δ)− R̃n(δ)− (R̃(δ0)− R̃n(δ0))}
r2 +D(δ, δ0)2

.

As before, such a concentration inequality can be obtained in a straightforward way
from an upper bound on the expectation of

Zr,ρ(δ0) := sup
δ∈B(ρ),D(δ,δ0)≤r

{R̃(δ)− R̃n(δ)− (R̃(δ0)− R̃n(δ0))}. (70)

Here, D(·, ·) again is a distance which mimics the root of the variance of R̃n(δ)− R̃n(δ0),
that is, we put

D(δ, δ∗)2 := E
[
(L̃(Y, δ(X))− L̃(Y, δ∗(X)))2

]
.

The whole proof is now very similar to the SVM section. In particular, we can only
prove a margin property of the distance D(δ, δ∗) on a subspace

B(ρ) := {δ ∈ ∆ : ‖δ‖1 ≤ ρ} ⊂ ∆

with some fixed ρ > 0.

Lemma 6.27 (Margin property for boosting loss). (i) For all δ ∈ ∆, it holds that
‖δ‖∞ ≤ ‖δ‖1.

(ii) Put

• for φ = φ1: Cφ := 0,

• for φ = φ2: Cφ := 2− 2 log(2)

Then it holds for all δ ∈ B(ρ) that

D(δ, δ∗)2 ≤ cρ · {R̃(δ)− R̃(δ∗)},

where cρ := φ(ρ) + φ(−ρ) + Cφ.
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Proof. 1. Let δ = δβ,g. Then we have

‖δ‖∞ ≤ ‖δβ,g‖∞ ≤
N∑
j=1

βj‖g(j)‖∞ ≤
N∑
j=1

βj.

Computing the infimum over all possible representations δ = δβ,g yields

‖δ‖∞ ≤ ‖δ‖1.

2. This is left as an exercise.

6.6 Excursus: empirical process theory

Our goal is to derive a (good) upper bound for E|Zr,ρ(δ0)| in (70).
The following theorem provides upper bounds of expectations of suprema by using cov-
ering numbers. These results are taken from [10] (Theorem 4.12) and [19] (Corollary
2.2.8).
In the following, we write Eε[·] = E[·|Z1, ..., Zn] if the expectation is only taken with
respect to ε1, ..., εn. Thus, Eε[·] is still a random variable dependent on X1, ..., Xn.

Lemma 6.28 (Symmetrization, contraction and entropy bounds). Let Zi, i = 1, ..., n
be i.i.d. random variables with values in Z and F ⊂ {f : Z → R measurable}.

• Symmetrization: Let ε1, ..., εn be i.i.d. Rademacher variables (that is, P(ε1 = 1) =
P(ε1 = −1) = 1

2
) independent of Z1, ..., Zn. Then it holds that

E sup
f∈F

∣∣∣ n∑
i=1

{f(Zi)− Ef(Zi)}
∣∣∣ ≤ 2E sup

f∈F

∣∣∣ n∑
i=1

εif(Zi)
∣∣∣.

• Contraction inequality: If `i : R → R, i = 1, ..., n (here, `i may depend on
Z1, ..., Zn!) is Lipschitz continuous with Lipschitz constant 1 and if `i(0) = 0,
then it holds that

Eε sup
f∈F

∣∣∣ n∑
i=1

εi`i(f(Zi))
∣∣∣ ≤ 2` · Eε sup

f∈F

∣∣∣ n∑
i=1

εif(Zi)
∣∣∣

• Entropy bound: It holds that

Eε sup
f∈F

n∑
i=1

∣∣∣εif(Zi)
∣∣∣ ≤ 12 ·

√
n ·
∫ a

0

√
logN(ε,F , ‖ · ‖2,n)dε,

where ‖f‖2,n :=
(

1
n

∑n
i=1 f

2(Zi)
)1/2

and a := supf∈F ‖f‖2,n.

122



6 Regression and classification trees; Boosting

With these results, we can prove the following lemma (cf. [16], Corollary 3.4 and [12],
Lemma 2.2).

Lemma 6.29. Let Z1, ..., Zn be i.i.d. random variables with values in Z and F ⊂
{f : Z → R measurable}. Suppose that for all f ∈ F , it holds that Ef(Z1)2 ≤ σ2,
‖f‖∞ ≤M . Suppose that there exist 0 ≤ p < 2, c1, c2 > 0 such that

logN(ε,F , ‖ · ‖2,n) ≤ C ′ · ε−p.

Then there exists a universal constant c > 0 such that

E sup
f∈F

∣∣∣ n∑
i=1

{f(Zi)− Ef(Zi)}
∣∣∣ ≤ c ·

[
Bn1/2σ1− p

2 +B
4

2+pn
p

2+pM
2−p
2+p
]
,

where B := (C′)1/2

2−p .

Proof. Step 1: Theorem 6.28(c) ⇒

Eε sup
f∈F

∣∣∣ n∑
i=1

εif(Zi)
∣∣∣ ≤ 12 ·

√
n

∫ a

0

√
logN(ε,F , ‖ · ‖2,n)dε

≤ 12(C ′)1/2
√
n

∫ a

0

ε−p/2dε ≤ 12
(C ′)1/2

1− p
2︸ ︷︷ ︸

=:B̃

√
nδ

2−p
2 . (71)

Step 2: Upper bounding Ea2: We have

a2 = sup
f∈F

1

n

n∑
i=1

f(Zi)
2 ≤ sup

f∈F
Ef(Zi)

2 + sup
f∈F

1

n

∣∣∣ n∑
i=1

{
f(Zi)

2 − Ef(Zi)
2
}∣∣∣

⇒

Ea2 ≤ sup
f∈F

Ef(Zi)
2 + E sup

f∈F

1

n

∣∣∣ n∑
i=1

{
f(Zi)

2 − Ef(Zi)
2
}∣∣∣

Theorem 6.28(a)

≤ sup
f∈F

Ef(Zi)
2 +

2

n
E sup
f∈F

∣∣∣ n∑
i=1

εif(Zi)
2
∣∣∣.

Theorem 6.28(b) implies (note that `(z) = z2

2M
satisfies for z ∈ [−M,M ] that |`(zz) −

`(z′)| ≤ |z+z′|
2M
· |z − z′| ≤ |z − z′|)

Eε sup
f∈F

∣∣∣ n∑
i=1

εif(Zi)
2
∣∣∣ ≤ 2 · 2M · Eε sup

f∈F

∣∣∣ n∑
i=1

εif(Zi)
∣∣∣.
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We conclude that

Ea2 ≤ σ2 +
8M

n
E sup
f∈F

∣∣∣ n∑
i=1

εif(Zi)
∣∣∣ = σ2 +

8M

n
· EA, (72)

where A := Eε supf∈F
∣∣∑n

i=1 εif(Zi)
∣∣.

Step 3: Upper bounding EA: Plugging in the above result into (71) yields

EA = E sup
f∈F

εif(Zi) ≤ B̃
√
nE[(a2)

2−p
4 ]

Jensen’s ineq.

≤ B̃
√
nE[a2]

2−p
4

(72)

≤ B̃
√
n
(
σ2 +

8M

n
· EA

) 2−p
4

(x+y)q≤xq+yq (q≤1)

≤ B̃
√
nσ

2−p
2 + 8

2−p
4 B̃n

p
4 ·M

2−p
4︸ ︷︷ ︸

=x

· (EA)
2−p

4︸ ︷︷ ︸
=y

Young ineq. r = 4
2−p

≤
xy≤xq

q
+ yr

r
, 1
q

+ 1
r

=1

B̃
√
nσ

2−p
2 +

2 + p

4

(
8

2−p
4 B̃n

p
4 ·M

2−p
4

) 4
2+p +

2− p
4
· EA

Rearranging terms and solving for EA yields

EA ≤ 4

2 + p︸ ︷︷ ︸
≤2

·
[
B̃
√
nσ

2−p
2 +

2 + p

4
8

2−p
2+p B̃

4
2+pn

p
2+p ·M

2−p
2+p

]
.

Step 4: Theorem 6.28(a) implies

E sup
f∈F

∣∣∣ n∑
i=1

{f(Zi)− Ef(Zi)}
∣∣∣ ≤ 2EA.

The following theorem allows to transfer an upper bound for the covering number of C
to an upper bound of the convex hull conv(C) of C (cf. [19], Theorem 2.6.9):

Theorem 6.30. Suppose that (A2) of Definition 6.24 holds. Let

conv(C) := {
N∑
j=1

αjg
(j) : N ∈ N, αj ∈ [0, 1],

N∑
j=1

αj ≤ 1, g(j) ∈ C}

be the convex hull of the function class C. Then there exists a constant c′cov > 0 only
dependent on ccov such that

logN(ε, conv(C), ‖ · ‖2,n,X) ≤ V ·
(c′cov
ε

) 2V
V+2

.
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Remark: Note that the upper bound for the covering number of conv(C) is much
larger than the covering number of C due to the additional log term on the left hand
side.
Based on the above results, we can now derive an upper bound for E|Zr,ρ(δ0)|.

Lemma 6.31. Let r > 0, δ0 ∈ B(ρ). Suppose that (A1),(A2) from Definition 6.24 hold.
Then there exists a universal constant c > 0 such that

E|Zr,ρ(δ0)| ≤ c ·
[
Bρn

−1/2r
2

V+2 +
(
2Bρφ(ρ)

) 1
V+1n−

1
2
V+2
V+1

]
=: φρ(r

2),

where Bρ := (V + 2)V 1/2(c′covρφ
′(ρ))

V
V+2 .

Proof. Define

F = {fδ(x, y) := L̃(y, δ(x))− L̃(y, δ0(x)) : δ ∈ B(ρ), D(δ, δ0) ≤ r}.

Then we have

E|Zr,ρ(δ0)| = E sup
f∈F

∣∣∣ n∑
i=1

{f(Xi, Yi)− Ef(Xi, Yi)}
∣∣∣.

We want to apply Lemma 6.29. To do so, we have to upper bound N(ε,F , ‖ · ‖2,n),

where ‖f‖2,n =
(

1
n

∑n
i=1 f(Xi, Yi)

2
)1/2

. This is done by successively simplifying F :

• F1 = {L̃(y, δ(x)) = φ(−yδ(x)) : δ ∈ B(ρ), D(δ, δ0) ≤ r}.

• F2 = {−yδ(x) : δ ∈ B(ρ), D(δ, δ0) ≤ r}

• F3 = {δ(x) : δ ∈ B(ρ), D(δ, δ0) ≤ r} with new distance/norm ‖f‖2,n,X :=(
1
n

∑n
i=1 f(Xi)

2
)1/2

• F4 = { δ(x)
ρ

: δ ∈ B(ρ), D(δ, δ0) ≤ r} ⊂ conv(C) with ‖ · ‖2,n,X .

This inclusion holds since δ =
∑N

j=1 βjg
(j) ∈ B(ρ) satisfies

∑N
j=1 βj ≤ ρ, that is,

δ
ρ

=
∑N

j=1
βj
ρ
g(j) satisfies

∑N
j=1

βj
ρ
≤ 1.
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Then we have

logN(ε,F , ‖ · ‖2,n)
(a)

≤ logN(ε,F1, ‖ · ‖2,n)
(b)

≤ logN(
ε

φ′(ρ)
,F2, ‖ · ‖2,n)

(c)

≤ logN(
ε

φ′(ρ)
,F3, ‖ · ‖2,n,X)

(d)

≤ logN(
ε

ρφ′(ρ)
,F4, ‖ · ‖2,n,X)

(e)

≤ logN(
ε

ρφ′(ρ)
, conv(C), ‖ · ‖2,n,X)

Theorem 6.30

≤ V ·
(
c′ρφ′(ρ))

2V
V+2 · ε−

2V
V+2 .

The justifications for (a)-(d) are left as an exercise.
For fδ ∈ F , we have

Efδ(Xi, Yi)
2 ≤ D(δ, δ0)2 ≤ r2 =: σ2

and (since φ is non-decreasing)

‖fδ‖∞ ≤ 2φ(ρ) =: M

Let C ′ = V
(
c′ρφ′(ρ))

2V
V+2 , p = 2V

V+2
and

B =
(C ′)1/2

2− p
=
V + 2

4
V 1/2

(
c′covρφ

′(ρ))
V
V+2 .

Then Lemma 6.29 implies

E|Zr,ρ(δ0)| ≤ c

n
·
[
Bn1/2r1− p

2 +B
4

2+pn
p

2+pM
2−p
2+p
]

p= 2V
V+2
= c ·

[
Bn−1/2r

2
V+2 +

(
2Bφ(ρ)

) 1
V+1 · n−

1
2
V+2
V+1

]
.

As in Section 4 (SVMs) we now apply the peeling device and a concentration inequality
of Talagrand-type to obtain the following result (as before, we use ‖fδ‖∞ ≤ 2φ(ρ)).

Lemma 6.32. Let r > 0, δ0 ∈ B(ρ). Suppose that (A1),(A2) from Definition 6.24 hold.
Then there exists a universal constant c > 0 such that for all t > 0 it holds that

P
(
Vr,ρ(δ0) ≥ c ·

(φρ(r2)

r2
+

√
t

nr2
+
φ(ρ)t

nr2

))
≤ e−t.
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We already know from earlier proofs that we aim to choose r as small as possible such
that still Vr,ρ(δ0) ≤ 1

Ncρ
holds with large probability. The following lemma provides the

necessary lower bound on r.

Lemma 6.33. Let ρ ≥ 1, δ0 ∈ B(ρ). Suppose that (A1),(A2) from Definition 6.24 hold.
Then for each N ∈ N, there exists a constant c(N) > 0 only dependent on Cφ, φ

′(0), c′

such that any

r2 ≥ r2
ρ,t := c(N) · cρ

[
((V + 2)V 1/2)

V+2
V+1 · (ρφ′(ρ))

V
V+1φ(ρ)

1
V+1 · n−

1
2
V+2
V+1 + φ(ρ) · t

n

]
satisfies

P
(
Vr,ρ(δ0) ≥ 1

Ncρ

)
≤ e−t.

Proof. To follow the assertion from Lemma 6.32, we have to guarantee that

1

Ncρ
≥ c ·

(φρ(r2)

r2
+

√
t

nr2
+
φ(ρ)t

nr2

)
.

This is implied by

1

3Ncρ
≥ c

φρ(r
2)

r2
,

1

3Ncρ
≥
√

t

nr2
,

1

3Ncρ
≥ φ(ρ)t

nr2

⇐ 1

6Ncρ
≥ cBρn

− 1
2 r−

2(V+1)
V+2 ,

1

6Ncρ
≥ c

r2

(
2Bρφ(ρ)

) 1
V+1n−

1
2
V+2
V+1 ,

1

3Ncρ
≥
√

t

nr2
,

1

3Ncρ
≥ φ(ρ)t

nr2
,

which is furthermore implied by

r2 ≥ max
{

(6cN)
V+2
V+1 (cρBρ)

V+2
V+1 · n−

1
2
V+2
V+1 , 6cNcρ

(
2Bρφ(ρ)

) 1
V+1n−

1
2
V+2
V+1 ,

(3Ncρ)
2 t

n
, (3N) · cρφ(ρ)

t

n

}
.

Using φ(ρ) ≤ cρ and choosing c̃(N) (only dependent on N) large enough, we can sum-
marize these conditions to

r2 ≥ c̃(N) · cρ ·
[(
Bρcρ

) 1
V+1 ·

{
Bρ + 1

}
n−

1
2
V+2
V+1 + cρ

t

n

]
. (73)

We now upper bound the right hand side even further to simplify the expression a little
bit more. We do this by summarizing the constants c′cov, Cφ, φ

′(0) into c̃(N). It holds
that

cρ ≤ (2 + Cφ) · φ(ρ),
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and for ρ ≥ 1, we have ρφ′(ρ) ≥ φ′(1) ≥ φ′(0). Thus

Bρ + 1 ≤ const.(c′, φ′(0)) · (V + 2)V 1/2(ρφ′(ρ))
V
V+2 .

Plugging in these estimates into (73) yields that (73) is implied by

r2 ≥ r2
ρ,t := c(N) · cρ

[
((V + 2)V 1/2)

V+2
V+1 · (ρφ′(ρ))

V
V+1φ(ρ)

1
V+1n−

1
2
V+2
V+1 + φ(ρ) · t

n

]
.

6.7 Proof of the boosting oracle inequality

Proof. [Proof of Theorem 6.26] Let

δ0 ∈ arg min
δ∈∆

{
R̃(δ)− R̃(δ∗) + 2λ · P (‖δ‖1)

}
.

Discretization: As in the proof of the SVM algorithm, discretize the radii via

ρ̂ := 2k̂, k̂ = dlog(‖δ̂‖1)+e,
ρ0 := 2k0 , k0 = dlog(‖δ0‖1)+e.

Derivation of the maximal radius: It holds that

R̃n(δ̂) + λ · P (‖δ̂‖1) ≤ R̃n(0) + λ · P (‖0‖1) = φ(0) + λφ(0),

thus P (‖δ̂‖1) ≤ φ(0)+2λφ(0)
λ

λ≥n−1

≤ 2φ(0)n.
Convexity of φ implies that φ(x) ≥ φ′(0)x+ φ(0) ≥ φ′(0)x, thus

φ(0)n ≥ P (‖δ̂‖1) ≥ ρ(2‖δ̂‖1) ≥ 2φ′(0)‖δ̂‖1 ⇒ φ(0)

φ′(0)
n ≥ ‖δ̂‖1.

Similarly, we have P (‖δ0‖1) ≤ φ(0)
φ′(0)

n.
Thus

ρ̂, ρ0 ∈ R := {2k : k ∈ {0, ..., dlog2(
φ(0)

φ′(0)
n)e}}.

By defining ρ̃ := max{ρ̂, ρ0}, we have

‖δ̂‖1 ≤ ρ̂, ‖δ0‖1 ≤ ρ0 ⇒ δ̂, δ0 ∈ B(ρ̃),

and vice versa,
ρ̂ ≤ 2 max{‖δ̂‖1, 1}, ρ0 ≤ 2 max{‖δ0‖1, 1}. (74)
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Definition of a ’nice’ event A: Put

A :=
⋂

ρ∈R,ρ≥ρ0

{Vrρ,t̃,ρ(δ0) ≤ 1

cρN
}.

Lemma 6.32 implies that

P(Ac) ≤
∑

ρ∈R,ρ≥ρ0

P
(
Vrρ,t̃,ρ(δ0) ≥ 1

cρN

)
≤ |R| · e−t̃ ≤ e−t.

Derivation of the upper bound of excess Bayes risk on A: Standard techniques
yield

R̃(δ̂)− R̃(δ) ≤ R̃(δ̂)− R̃(δ0) + R̃(δ0)− R̃(δ∗), (75)

and (with t̃ := t+ log(|R|))

R̃(δ̂)− R̃(δ0) ≤ R̃n(δ̂)− R̃n(δ0) +
{
R̃(δ̂)− R̃n(δ̂)− (R̃(δ0)− R̃n(δ0))

}
δ̂,δ0∈B(ρ̃)

≤
{
λP (‖δ0‖1)− λP (‖δ̂‖1)

}
+ Vrρ̃,t̃,ρ̃(δ0) ·

(
r2
ρ̃,t̃ +D(δ̂, δ0)2

)
(76)

Lemma 6.27(ii) implies

D(δ̂, δ0)2 ≤
[
D(δ̂, δ∗) +D(δ0, δ

∗)
]2 ≤ 2D(δ̂, δ∗)2 + 2D(δ0, δ

∗)2

δ̂,δ0∈B(ρ̃)

≤ 2cρ̃
{
R̃(δ̂)− R̃(δ∗) + R̃(δ0)− R̃(δ∗)

}
. (77)

On A we conclude from (75), (76) and (77) that

R̃(δ̂)− R̃(δ∗) ≤ (1 + 2N−1){R̃(δ0)− R̃(δ∗)}+ 2N−1{R̃(δ̂)− R̃(δ∗)}

+
{
λP (‖δ0‖1)− λP (‖δ̂‖1)

}
+

1

N

r2
ρ̃,t̃

cρ̃
.

Rearranging terms and solving for R̃(δ̂)− R̃(δ∗) yields

R̃(δ̂)− R̃(δ∗) ≤ 1

1− 2N−1

[
(1 + 2N−1) · {R̃(δ0)− R̃(δ∗)}

+
{
λP (‖δ0‖1)− λP (‖δ̂‖1)

}
+

1

N

r2
ρ̃,t̃

cρ̃

]
. (78)

We now discuss the second summand on the right hand side.
Lemma 6.33, Definition P (ρ/2) amd λ, log(|R|) ≤ log(log2( φ(0)

φ′(0)
n)+1) ≤ c(φ(0), φ′(0)) log(log2(n))

yield

r2
ρ,t

Ncρ
≤ c(N)

N

{((V + 2)V 1/2

√
n

)V+2
V+1 +

t̃

n

}
·
{

(ρφ′(ρ))
V
V+1φ(ρ)

1
V+1 + φ(ρ)

}
≤ λ · P (

ρ

2
).
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Since ρ 7→ P (ρ) is non-decreasing, we conclude that

r2
ρ̃,t

Ncρ̃
≤ λ ·max{P (

ρ̂

2
), P (

ρ0

2
)} ≤ λ · {P (

ρ̂

2
) + P (

ρ0

2
)}

(74)

≤ λ ·
{

max{P (‖δ̂‖1), P (1)}+ max{P (‖δ0‖1), P (1)}
≤ λP (‖δ̂‖1) + λP (‖δ0‖1) + 2λP (1).

Plugging in this into (78) yields the final result,

R̃(δ̂)− R̃(δ∗) ≤ 1

1− 2N−1

[
(1 + 2N−1) · {R̃(δ0)− R̃(δ∗)}+ 2λP (‖δ0‖1) + 2λP (1)

]
N large enough

≤ 2{R̃(δ0)− R̃(δ∗) + 2λP (‖δ0‖1)}+ 4λP (1)
Def. δ0= 2 inf

δ∈∆

{
R̃(δ)− R̃(δ∗) + 2λP (‖δ‖1)

}
+ 4λP (1).

We will now introduce a model assumption for the optimal decision boundary. This is
done to derive an explicit convergence rate of the excess Bayes risk based on the oracle
inequality from Theorem 6.26. The model assumption we introduce is dependent on the
chosen base class C. Here, we only consider decision stumps.

Definition 6.34 (Model assumption: Boosting with decision stumps). Let C = C1 and
φ ∈ {φ1, φ2}. Let B > 0 and suppose that there exist measurable functions h1, ..., hd :
[0, 1]→ R such that

log
( η(x)

1− η(x)

)
=

d∑
j=1

hj(xj) (79)

and |hj(0)|+ |hj(1)|+ |hj|BV ≤ B (here, | · |BV denotes the variation of a function).

Remarks:

• With decision stumps, we can approximate a one-dimensional function arbitrarily
well by glueing decision stumps together. However, sums of decision stumps are
not able introduce interactions between different coordinates. Therefore, we can
only hope to approximate structures of the form (79) with boosting of decision
stumps. This is also clear if we write down the explicit expression of a δ ∈ ∆:

δ(x) =
N∑
j=1

βjgj(x) =
∑
k

a1,k

{
1{x1<s1,k}−1{x1≥sk}

}
+...+

∑
k

ad,k
{
1{xd<sk}−1{xd≥sd,k}

}
with suitably chosen aj,k, sj,k ∈ R.
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• Consider the more general class C of trees with 2 inner vertices. The elements of
C have the form (

y11{xj<s} + y21{xj≥s}
)
·
(
ỹ11{xj̃<s̃} + ỹ21{xj̃≥s̃}

)
,

in particular, there occur products 1{xj<s} ·1{xj<s̃} along two different coordinates.
The corresponding model assumption reads

log
( η(x)

1− η(x)

)
=

d∑
j,k=1

hj,k(xj, xk),

that is, we can now approximate sums of functions which depend on 2 variables.

• Continuing this scheme shows that boosting of trees with d inner vertices can
produce arbitrary functions starting from d dimensions.

Theorem 6.35. Suppose that the model assumption of Definition 6.34 holds. Suppose
that φ ∈ {φ1, φ2}. Then it holds that

inf
δ∈∆

{
R̃(δ)− R̃(δ∗) + 2λP (‖δ‖1)

}
≤ 2λP (

Bd

2
).

Let λ be chosen with equality in (69). Then with some universal constant c > 0, it holds
that

inf
δ∈∆

{
R̃(δ)− R̃(δ∗)+2λP (‖δ‖1)

}
≤ c(1+ t) log(d+1)3 ·n−

1
2
V+2
V+1 ·

{
(Bd+ 1)eBd, φ = φ1

(Bd+ 1), φ = φ2,

where V = 2b2 log(2d)c.

Proof. This is left as an exercise.

Remarks:

• Even for high dimensions, the convergence rate is at most n−
1
2 in terms of n since

V+2
V+1
→ 1 (d→∞).

• In the case of the exponential loss, one can not hope for a good behavior of the
algorithm for large dimensions due to the factor eBd. For logistic loss, one only
has a factor of size Bd and therefore can expect a much better behavior. Based on
our theoretical results, we can therefore not hope for a good behavior of boosting
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if d � n and all functions h1, ..., hd in eq. (79) enter log( η(x)
1−η(x)

) with the same
strength. Note that the factor d is however reasonable since we have to estimate
d different quantities.

• In practice, one observes that also boosting with exponential loss works quite
well. One should always remember that we only prove upper bounds for the excess
Bayes risk in this lecture under rather general assumptions. Under more specific
assumptions, one may show much better results and of course there is also a
chance that some of our inequalities are not tight with respect to the influence of
the dimension d.

Finally, suppose that instead of Definition 6.34, we have that log( η(x)
1−η(x)

) only decomposes

into s� d summands, that is, only s summands in (79) are nonzero in the way that

log
( η(x)

1− η(x)

)
=
∑
j∈S

hj(xj)

with S ⊂ {1, ..., d}, |S| = s� d. Then we obtain a similar result with

inf
δ∈∆

{
R̃(δ)− R̃(δ∗) + 2λP (‖δ‖1)

}
≤ c(1 + t) log(d+ 1)3n−

1
2
V+2
V+1 ·

{
(Bs+ 1)eBs, φ = φ1

(Bs+ 1), φ = φ2,
.

This shows that the original dimension d only enters the rate with log(d) through λ,
while the reduced dimension s produces much smaller factors (Bs + 1)eBs or (Bs + 1),
respectively.

6.8 Exercises

Task 21 (A maximal inequality for finite function classes). Let Z1, ..., Zn be i.i.d. ran-
dom variables on X ⊂ Rd. Let G ⊂ {g : X → R measurable} be a finite function class.
Suppose that there exist σ2,M > 0 such that for all g ∈ G, it holds that Eg(Z1) = 0,
Var(g(Z1)) ≤ σ2 and ‖g‖∞ ≤M .

1. Put W (g) :=
∣∣∑n

i=1 g(Zi)|. Show with Bernstein’s inequality: It holds that

P(W (g) ≥ t) ≤

2 exp
(
− t2

4nσ2

)
, t < 3σ2n

M
,

2 exp
(
− 3t

4M

)
, t ≥ 3σ2n

M
.

2. Define

A1(g) := W (g)1{W (g)> 3σ2n
M
}, A2(g) := W (g)1{W (g)≤ 3σ2n

M
},
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and ψp(x) = exp(xp)− 1 für p ∈ {1, 2}. Show that

Eψ1

(A1(g)

4M

)
≤ 1.

Hint: Write ψ1(x) =
∫ x

0
etdt =

∫∞
0
1{x≥t}e

tdt, then apply the expected value. Note

that P(A1(g) ≥ z) ≤ P(W (g) ≥ max{z, 3σ2n
M
}), thus one can apply the first in-

equality from (a) and resubstituting max{z, 3σ2n
M
} by z afterwards.

3. Show that

ψ1(E sup
g∈G

A1(g)

4M

)
≤ |G|.

Hint: Jensen’s inequality and (b).

4. Conclude that

E sup
g∈G

A1(g)

4M
≤ log(|G|+ 1).

5. Show that Eψ2

(
A2(g)
2σ
√
n

)
≤ 1.

Hint: Write ψ2(x) =
∫ x2

0
etdt =

∫∞
0
1{x≥

√
t}e

tdt and P(A2(g) ≥ z) ≤ P(W (g) ≥
min{z, 3σ2n

M
}).

6. Conclude that

E sup
g∈G

A2(g)

2σ
√
n
≤
√

log(|G|+ 1).

7. Conclude from (d) and (f):

E sup
g∈G

W (g) ≤ 4
{
σ
√
n
√

log(|G|+ 1) +M · log(|G|+ 1)
}
.

Task 22 (Proof of Theorem 6.9). Let X = [0, 1]d and S ∈ N. Denote by µ the Lebesgue
measure on Rd. Suppose that there are constants cµ, cbox > 0 such that

(A1) For all A ⊂ X , it holds that P(X ∈ A) ≤ c0µ(A).

(A2) For m = 2S, it holds that the optimal decision boundary ∂Ω∗1 only slices through
at most cboxm

d−1 of the md cubes in which the space X decomposes.

Let T0 ∈ TS be a dyadic tree which is obtained as follows. Repeat S times: Split each
vertex in dimension number 1,...., split each vertex in dimension number d.

1. Show that R(fT0)−R(f ∗) ≤ P(fT0(X) 6= f ∗(X)).
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2. Suppose that (A1) and (A2). Let C denote the set of cubes which have a nonempty
intersection with ∂Ω∗1. Show that

P(fT0(X) 6= f ∗(X)) ≤ cµcboxm
−1.

3. Show that |T0| ≤ md.

4. Conclude that

inf
T∈TS

{
R(fT )−R(f ∗) + λ · |T |

}
≤ cµcboxm

−1 + λmd.

5. Suppose that S ≥ log2(n)
d+1

and λ = c · log(d)+t
η0n

. Show that

inf
T∈TS

{
R(fT )−R(f ∗) + λ · |T |

}
≤ (2cµcbox +

c

η0

(log(2d) + t)) · n−
1
d+1 .

Task 23 (Covering Numbers of decision stumps). Let X ⊂ [0, 1]d and Y = {−1,+1}.
In this task we aim to show that the class of decision stumps,

C := {fT : T CART with one inner vertex }
= {y11{xj<s} + y21{xj≥s} : y1, y2 ∈ Y , s ∈ R, j ∈ {1, ..., d}}

satisfies

N(ε, C, ‖ · ‖2,n,X) ≤ (
ccov
ε

)V , ‖g‖2,n,X :=
( 1

n

n∑
i=1

g(Xi)
2
)1/2

, (∗)

where V = 2·b2 log2(2d)c and ccov are universal constants. To do so, we use the following
result: If V(C) is the VC-Dimension of C, then it holds that

N(ε, C, ‖ · ‖2,n,X) ≤ 13 · V(C) · (4e

ε2
)V(C).

Here, V(C) is defined as follows:

V(C) = inf{N ∈ N : mC(N) < 2N},

where

mC(N) := max
x1,...,xN∈[0,1]d

mC(x1, ..., xN), mC(x1, ..., xN) := |{(f(x1), ..., f(xN)) : f ∈ C}|

denotes the maximal number of different labelings of N points in the space [0, 1]d which
can be obtained via C.
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1. Show that if V(C) ≤ b2 log2(2d)c, then one has (*).

2. Let d = 1. Show that
mC(N) = 2N.

3. Let d be arbitrary. Show that

mC(N) ≤ min{2Nd, 2N}.

4. Show that for d ≥ 1, it holds that: V(C) ≤ b2 log2(2d)c.
Hint: d− 1 ≥ log2(d) for all d ≥ 1.

Task 24 (Proof of the margin property, Lemma 6.27(ii)). Let φ ∈ {φ1(x) = ex, φ2(x) =
log(1 + ex)} be non-decreasing, continuously differentiable and convex. Let L̃(y, s) =
φ(−ys). We show that for all δ : X → R with ‖δ‖∞ ≤ ρ it holds that

E[(L̃(Y, δ(X))− L̃(Y, δ∗(X)))2] ≤ cρ · {R̃(δ)− R̃(δ∗)},

where δ∗ ∈ arg minδ:X→R R̃(δ), R̃(δ) = EL̃(Y, δ(X)) and cρ = φ(ρ) + φ(−ρ) + Cφ, where

Cφ =

{
0, φ = φ1

2− 2 log(2), φ = φ2

.

To do so, we proceed as follows.

1. Show that δ∗(x) = g(η(x)), where g(η) satisfies (cf. the risk transfer formula from
Theorem 3.21):

0 = φ′(−g(η)) · η + φ′(g(η)) · (1− η).

2. Show that

E[(L̃(Y, δ(X))− L̃(Y, δ∗(X)))2|X = x] = A2(η(x), δ(x)),

E[L̃(Y, δ(X))− L̃(Y, δ∗(X))|X = x] = A1(η(x), δ(x)),

and determine the functions A1, A2.
Hint: You should obtain A1(η, δ) = η(φ(−δ)−φ(−g(η)))+(1−η)(φ(δ)−φ(g(η))).

3. Show with (a) that

∂ηA1(η, δ) =
[
φ(−δ)− φ(−g(η))

]
−
[
φ(δ)− φ(g(η))

]
.

4. Caution: This task is tedious. Show with (a) that

∂ηA2(η, δ) = ∂ηA1(η, δ) · (φ(δ) + φ(−δ) +B(η)),

where

B(η) :=
{{
ηφ′(−g(η)) + (1− η)φ′(g(η))

}
g′(η)− φ(g(η))− φ(−g(η))

}
.
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5. Put Cφ := 0 ∨maxη∈[0,1]B(η). Show that if g(η) ≥ δ, then one has

∂ηA1(η, δ) ≤ {φ(ρ) + φ(−ρ) + Cφ} · ∂ηA2(η, δ).

Otherwise, the above inequality holds with ’<’ instead.
Hint: It holds that φ(δ) + φ(−δ) ≤ φ(ρ) + φ(−ρ). Why?

6. Let g−1 denote the inverse function of g. Show that Aj(g
−1(δ), δ) = 0, j = 1, 2.

7. Show that g(η) ≥ δ implies

A2(η, δ) ≤ {φ(ρ) + φ(−ρ) + Cφ} · A1(η, δ).

A similar result is obtained for g(η) < δ. Hint: Integration.

8. Derive the values given for Cφ given above from (e).

Task 25 (Proof of Lemma 6.31 / transfer of Covering Numbers). Let L̃(y, s) = φ(−ys)
with some convex and non-decreasing, continuously differentiable φ. Let

F = {L̃(y, δ(x))− L̃(y, δ0(x)) : δ ∈ B(ρ), D(δ, δ0) ≤ r}

be the function class from Lemma 6.31 (in the following, we omit the additional condition

D(...) ≤ r). Let ‖f‖2,n =
(

1
n

∑n
i=1 f(Xi, Yi)

2
)1/2

. Define

• F1 = {L̃(y, δ(x)) = φ(−yδ(x)) : δ ∈ B(ρ)},

• F2 = {−yδ(x) : δ ∈ B(ρ)},

• F3 = {δ(x) : δ ∈ B(ρ)} with new distance measure ‖f‖2,n,X :=
(

1
n

∑n
i=1 f(Xi)

2
)1/2

,

• F4 = { δ(x)
ρ

: δ ∈ B(ρ)}.

Show that

1. N(ε,F , ‖ · ‖2,n) ≤ N(ε,F1, ‖ · ‖2,n),

2. N(ε,F1, ‖ · ‖2,n) ≤ N( ε
φ′(ρ)

,F2, ‖ · ‖2,n),

3. N( ε
φ′(ρ)

,F2, ‖ · ‖2,n) ≤ N( ε
φ′(ρ)

,F3, ‖ · ‖2,n,X), where ‖f‖2,n,X := ( 1
n

∑n
i=1 f(Xi)

2)1/2.

4. N( ε
φ′(ρ)

,F3, ‖ · ‖2,n,X) ≤ N( ε
ρφ′(ρ)

,F4, ‖ · ‖2,n,X).
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Task 26 (Approximations of functions with bounded variation). Let g : [0, 1]→ R be a
function with bounded variation |g|BV <∞. Here, |g|BV is defined as follows:

|g|BV = sup
M∈N

sup
0≤s0≤...≤sM≤1

M∑
i=1

∣∣g(si)− g(si−1)
∣∣.

From analysis it is know that there exist non-decreasing functions u, v : [0, 1]→ R with
g = u− v and |g|BV = |u|BV + |v|BV . Let N ∈ N.

1. Define C := u(1)− u(0). Show that C = |u|BV .

2. Let ti := sup{z ∈ [0, 1] : u(z) − u(0) ≤ C i
N
}, i = 0, ..., N be the ’quantiles’ of u.

Define

ũ : [0, 1]→ R, ũ(z) := u(0) +
N∑
i=1

C

N
1{z≥ti}.

Show that

‖u− ũ‖∞ ≤
|u|BV
N

.

Hint: Consider the expression for z ∈ [tj, tj+1), j = 0, ..., N − 1.

3. Show that ũ has the alternative representation

ũ(z) =
u(0) + u(1)

2
(1{z≥0} − 1{z<0}) +

N∑
i=1

C

2N
(1{z≥ti} − 1{z<ti}).

4. Conclude that there exists a function g̃ of the form

g̃(z) =
g(0) + g(1)

2
(1{z≥0} − 1{z<0})

+
N∑
i=1

|u|BV
2N

(1{z≥ti} − 1{z<ti})−
N∑
i=1

|v|BV
2N

(1{z≥qi} − 1{z<qi})

with 0 ≤ q0 ≤ .. ≤ qN ≤ 1 and the property ‖g − g̃‖∞ ≤ |g|BV
N

.

Task 27 (Convergence rate of boosting with decision stumps). Let X ⊂ [0, 1]d and
Y = {−1,+1}. In this task we derive upper bounds on

inf
δ∈∆

{
R̃(δ)− R̃(δ∗) + 2λP (‖δ‖1)

}
, ∆ = {

M∑
j=1

βjgj : M ∈ N, βj ≥ 0, gj ∈ C}
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6 Regression and classification trees; Boosting

based on the class of decision stumps

C := {y11{xj<s} + y21{xj≥s} : y1, y2 ∈ Y , s ∈ R, j ∈ {1, ..., d}}

and the exponential or logistic loss L̃(y, s) = φ(−ys), φ ∈ {φ1(x) = ex, φ2(x) = log(1 +
ex)}, respectively (cf. Theorem 6.35). To do so, we consider the model assumption from
Definition 6.34 which states that there exists a decomposition

δ∗(x) =
d∑
j=1

hj(xj)

with measurable functions h1, ..., hd : [0, 1] → R with |hj(0)| + |hj(1)| + |hj|BV ≤ B,
B > 0.

1. Let N ∈ N. Show with Task 26 that there exist h̃j : [0, 1]→ R, j ∈ {1, ..., d} with

‖hj − h̃j‖∞ ≤
B

N
, ‖h̃j‖1 ≤

B

2
.

2. Conclude that h̃N(x) :=
∑d

j=1 h̃j(xj) ∈ ∆ satisfies

‖δ∗ − h̃N‖∞ ≤
Bd

N
, ‖h̃N‖1 ≤

Bd

2
.

3. Show that

inf
δ∈∆

{
R̃(δ)− R̃(δ∗) + 2λP (‖δ‖1)

}
≤ 2λP (

Bd

2
).

4. Let λ = c · (1 + t)((V + 2)V 1/2)
V+2
V+1n−

1
2
V+2
V+1 be defined as in Theorem 6.26, where

V = 2b2 log2(2d)c. Show that with some universal constant c′ > 0, it holds that

inf
δ∈∆

{
R̃(δ)−R̃(δ∗)+2λP (‖δ‖1)

}
≤ c′(1+t) log(d+1)3·n−

1
2 ·

{
(Bd+ 1)eBd+1, φ = φ1,

(Bd+ 1), φ = φ2.

5. Discussion: What changes if instead, δ∗ has the form δ∗(x) =
∑s

j=1 hj(xj) with
some 1 ≤ s ≤ d?
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7 Neural networks

Similar to trees, neural networks are nonparametric algorithms which can be used both
for regression and classification problems. Contrary to trees there exists a more explicit
mathematical description of the corresponding decision rules.
Neural networks can be viewed as generalizations of the model classes for linear regression
(in the case of regression problems) or logistic regression (in the case of classification
problems). We shortly recall these methods.

• In linear regression, we considered the following decision rules for the Bayes rule
f ∗ (with respect to squared loss):

f(x) = xTβ, β ∈ Rd.

• In logistic regression, we considered the following decision rules for f ∗ (with respect
to 0-1 loss):

f(x) = arg max
k∈{1,...,K}

δk(x), δk(x) =
exp(xTβ(k))∑K
l=1 exp(xTβ(l))

= M(xTβ(1), ..., xTβ(K))k

with β(1), ..., β(K) ∈ Rd, where

M(z) =
1∑K
l=1 e

zl

ez1
...
ezK

 , z = (z1, ..., zK),

cf. Lemma 3.6. Contrary to Lemma 3.6, we stick to the overparametrized model
(β(k), k = 1, ..., K instead of k = 1, ..., K − 1).

In both cases, we now allow for more general (nonlinear) decision rules. More precisely,
we replace the linear mappings x 7→ xTβ or x 7→ (xTβ(1), ..., xTβ(K)) by more complex
mappings f : X → R or g : X → RK , the neural networks.
To define the function class of neural networks, we introduce an auxiliary function.

Definition 7.1 (Multivariate shift). For some function σ : R→ R and v ∈ Rr, define

σv : Rr → Rr, σv(x) :=

σ(x1 + v1)
...

σ(xr + vr)

 , x = (x1, ..., xr)
T .
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7 Neural networks

Definition 7.2 (Neural networks). Let L ∈ N0, p = (p0, ..., pL+1)T ∈ NL+2. A neural
network with network architecture (L, p) and activation function σ : R→ R is a function

g : Rp0 → RpL+1 ,

g(x) = W (L) · σv(L)

(
W (L−1) · σv(L−1)

(
. . .W (1) · σv(1)

(
W (0) · x

)
. . .
))
, (80)

where W (l) ∈ Rpl×pl+1 , l = 0, ..., L are weight matrices and v(l) ∈ Rpl , l = 1, ..., L are bias
vectors associated to g. Here, L is called the number of hidden layers and p is called
the width vector. Put

F(L, p) := {g | g neural network with architecture (L, p)}.

Remarks:

• A typical choice for the activation function is given by σ(x) = max{x, 0} (the
so-called ReLU function) or σ(x) = ex

1+ex
(sigmoid function). It is very important

that σ is nonlinear so that the composition of σ and linear mappings does lead to
more complex mappings. Note that if σ would be linear, then g from (80) would
only be a very complicated expression for a linear function which has no advantage
over the basic linear regression model.

• There exists an important motivation for the above definition of neural networks
from neuroscience: The original information (feature) x is successively processed
and transformed. If we put

x(0) := x

and
x(l+1) := σv(l+1)(W (l)x(l)), l = 0, ..., L− 1,

then g(x) = W (L)x(L). The result of g therefore is obtained by applying a linear
transformation L times followed by an ’activation’ (’processing’) by a nonlinear
function σ. This shall simulate the process in the brain, where electric impulses
are sent through a chain of neurons. This is also the reason why the elements of
the l-th layer x(l) are also called ’neurons’.

• Clearly, σ has a big influence on the specific form of the function class F(L, p).
Moreover, F(L, p) allows for more complex functions the larger L is and the larger
the components of p are.

The decision rules for regression and classification are obtained as follows: In both cases,
choose p0 = d.
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• For regression, choose pL+1 = 1 and F = F(L, p).

• For classification, choose pL+1 = K and ∆ = {M ◦ g : g ∈ F(L, p)}.

7.1 The neural network algorithm

Similar as in the section about boosting, we first define an exact neural network algorithm
which is then analyzed theoretically. In practice however, an approximation of this exact
algorithm is used.
For neural networks, it is necessary to understand the procedure in practice to define
an appropriate ’exact’ algorithm which shall be analyzed. We will therefore consider a
network algorithm for regression used in practice. Let Y = R, L(y, s) = (y − s)2.

Standard approach: With p0 = d, pL+1 = 1, let

f̂ stdn := arg min
f∈F(L,p)

R̂n(f), R̂n(f) :=
1

n

n∑
i=1

L(Yi, f(Xi)). (81)

Clearly, f̂ stdn will overfit the training data if F(L, p) is too large (that is, if L and
the entries of p are too large). Additionally, it is not possible to compute (81) in
practice. Instead, one uses an approximation with a gradient descent algorithm. Write
F(L, p) = {fθ : θ ∈ Θ}, where

θ = (v(1), ..., v(L),W (0), ...,W (L)) ∈ Θ = RT

is the vector which contains all the parameters of a network fθ ∈ F(L, p).

Definition 7.3 (Approximative network algorithm for regression). Let λ > 0, p0 = d,
pL+1 = 1.

Let θ(0) ∼ U [−w,w]D with w > 0 (initialization of weights). Let αm, m ∈ N be a
decreasing sequence of positive real numbers (the so-called learning rate). Put

J(θ) :=
L∑
l=0

‖W (l)‖2
2,

where ‖ · ‖2 is the Frobenius norm of a matrix. For m = 1, 2, ...,M , define

θ(m) = θ(m−1) − αm∇θ

{
R̂n(fθ) + λ · J(θ)

}∣∣
θ=θ(m−1) .

Put f̂≈n := fθ(M) .
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Remarks:

• Due to the random initialization and of the weights and the gradient descent
algorithm, it happens in practice that only few of the weights really affect the final
function value of f̂≈n .

• The penalization of the weights via J(θ) has the aim to prefer small weights.

The above approximative network algorithm motivates (not justifies) the definition of
the following restricted class of neural networks which then serves as the basis for the
exact network algorithm. For vectors v ∈ Rr let ‖v‖0 := #{j ∈ {1, ..., r} : vj 6= 0} which
counts the number of nonzero elements. A similar definition is made for matrices.

Definition 7.4. For s ∈ N, F > 0 define

F(L, p, s, F ) :=
{
f ∈ F(L, p) :

L∑
l=0

‖W (l)‖0 +
L∑
l=1

‖v(l)‖0 ≤ s, max
j∈{1,...,pL+1}

‖fj‖∞ ≤ F,

∀l : ‖W (l)‖∞ ≤ 1, ‖v(l)‖∞ ≤ 1
}
.

This class measures the number of nonzero entries in the weight matrices and bias vectors
with the parameter s. The additional parameter F is an upper bound on the maximum
norm of the networks which is later needed to simplify the proofs. With this, we can
formulate the following exact algorithm for regression.

Definition 7.5 (Exact network algorithm for regression). Let L(y, s) = (y−s)2, p0 = d,
pL+1 = 1. Then

f̂n ∈ arg min
f∈F(L,p,s,F )

R̂n(f), R̂n(f) :=
1

n

n∑
i=1

L(Yi, f(Xi)).

is called exact network algorithm for regression.

Note that f̂≈n from Definition 7.3 and f̂n from Definition 7.5 may differ quite a lot from
each other:

• There is no explicit stopping rule for M in f̂≈n .
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• In general, θ 7→ R̂n(fθ) has a lot of local minima since it is not a convex function.
f̂≈n is obtained from a gradient descent algorithm which only converges towards
local minima.

• The approximate procedure can not guarantee that only s parameters contribute
to the final value of f̂≈n . Therefore, the assumption f̂≈n ∈ F(L, p, s, F ) may not be
satisfied.

Therefore, statements regarding f̂n can only be transferred in a limited way to f̂≈n .
However, they yield a reasonable first step to understand the performance of neural
networks. A detailed analysis of approximative algorithms from Definition 7.3 is a topic
of current research.
For completeness, we present also an exact network algorithm for classification.

Definition 7.6 (Exact network algorithm for classification). Let L̃(y, s) = − log(sy) =

−
∑K

k=1 1{y=k} log(sk), p0 = d and pL+1 = K. Put

δ̂n ∈ arg min
δ=M◦g,g∈F(L,p,s,F )

R̂n(δ), R̂n(δ) :=
1

n

n∑
i=1

L̃(Yi, δ(Xi)).

Then f̂n(x) = arg maxk∈{1,...,K} δ̂n(x) is called exact network algorithm for classification.

7.2 Approximation theory for neural networks

To get a better understanding for the set of decision functions F(L, p, s, F ) and their ap-
proximation qualities, we first provide some approximation theory for the ReLU function
σ(x) = max{x, 0}.
The following result is taken from [14]. Here for r ∈ N, α ∈ Nr

0 denotes a multi-index.
We define |α| = α1 + ...+ αr. For f : Rr → R, we put ∂αf := ∂α1

x1
. . . ∂αrxr f .

Theorem 7.7. Let β ∈ N. Let f : [0, 1]r → R be β-times continuously differentiable
with

∑
α:0≤|α|≤β ‖∂αf‖∞ ≤ K. Then for all m,N ∈ N with N ≥ max{(β + 1)r, K + 1}

there exists a network
f̃ ∈ F(L, p, s,∞)

such that

p = (r, 12rN, ..., 12rN, 1),

L = 8 + (m+ 5)(1 + dlog2(r)e),
s ≤ 94r2(β + 1)2rN(m+ 6)(1 + dlog2(r)e)
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and
‖f − f̃‖∞ ≤ (2K + 1)3r+1N2−m +K2βN−β/r. (82)

Proof. A proof sketch is left as an exercise.

Based on a specific approximation quality (given through m,N ∈ N), the theorem pro-
vides a network f̃ of a specific size which allows to approximate f accordingly. The
result itself is not ’optimal’ in any sense (in particular, the dimension r enters the ap-
proximation rate exponentially), but it gives an impression of the approximation quality
of neural networks. In the exercises, we investigate a sketch of the proof.

7.3 Theoretical results

We now investigate a theoretical result for the exact network algorithm from Definition
7.5 for regression problems with quadratic loss L(y, s) = (y − s)2 from [14]. We start
with the following model assumption and afterwards derive an oracle inequality.

Definition 7.8 (Model assumption: regression). It holds that Y = f ∗(X) + ε, where
ε,X are independent and ε ∼ N(0, v2) with some v > 0.

Theorem 7.9 (Oracle inequality for neural networks). Suppose that the model as-
sumption from Definition 7.8 holds. Suppose that F ≥ K. Let γ ∈ (0, 1]. Define
H(γ) := logN(γ,F(L, p, s, F ), ‖ ·‖∞). Then there exists a universal constant c > 0 such
that

ER(f̂n)−R(f ∗) ≤ 2 inf
f∈F(L,p,s,F )

{
R(f)−R(f ∗)

}
+ c ·

{
(F + v)2 · H(γ)

n
+ (F + v+ 1) · γ

}
.

Proof. Step 1: Derivation of the basic inequality. Note that

R̂n(f) =
1

n

n∑
i=1

L(Yi, f(Xi)) =
1

n

n∑
i=1

(εi + f ∗(Xi)− f(Xi))
2

=
1

n

n∑
i=1

ε2
i +

2

n

n∑
i=1

εi(f
∗(Xi)− f(Xi)) +

1

n

n∑
i=1

(f ∗(Xi)− f(Xi))
2

︸ ︷︷ ︸
=:D̂n(f)

. (83)
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Since E[ε|X] = 0, we have

R(f) = EL(Y, f(X)) = E[(ε+ f ∗(X)− f(X))2] = E[ε2] + E[(f ∗(X)− f(X))2]︸ ︷︷ ︸
=:D(f)

. (84)

Therefore, we have for any f ∈ F(L, p, s, F ) that

R(f̂n)−R(f ∗) ≤ {R(f̂n)−R(f)}+ {R(f)−R(f ∗)} (85)

and

R(f̂n)−R(f) = R̂n(f̂n)− R̂n(f) + {R(f̂n)− R̂n(f̂n)− (R(f)− R̂n(f))}
≤ {R(f̂n)− R̂n(f̂n)− (R(f)− R̂n(f))}

(83),(87)
= D(f̂n)−D(f)− (D̂n(f̂n)− D̂n(f))

+
2

n

n∑
i=1

εi(f̂n(Xi)− f ∗(Xi))−
2

n

n∑
i=1

εi(f(Xi)− f ∗(Xi)).

With Eε = 0 we conclude that

ER(f̂n)−R(f) ≤ E[D(f̂n)− D̂n(f̂n)] + E
[ 2

n

n∑
i=1

εi(f̂n(Xi)− f ∗(Xi))
]

=: A1 + A2 (86)

Remark: The right hand side is not dependent on f which seems a little strange. This
is due to the model assumption and since ED̂n(f) = D(f).

Step 2: An upper bound for the first summand in (86).
Let fj, j = 1, ..., N(γ) := N(γ,F(L, p, s, F ), ‖ · ‖∞) be a γ-covering of F(L, p, s, F ) with
oBdA. ‖fj‖∞ ≤ F . Let ĵ ∈ {1, ..., N} be such that

‖f̂n − fĵ‖∞ ≤ γ.

By ∣∣(f(x)− f ∗(x))2 − (f̃(x)− f ∗(x))2
∣∣ ≤ ∣∣f(x)− f̃(x)

∣∣ · ∣∣f(x) + f̃(x)− 2f ∗(x)
∣∣

and ‖f̂n‖∞ ≤ F , ‖f ∗‖∞ ≤ K ≤ F , we have that∣∣D(f̂n)−D(fĵ)
∣∣ ≤ 4Fγ,

∣∣D̂n(f̂n)− D̂n(fĵ)
∣∣ ≤ 4Fγ.

We now aim to apply Lemma 7.10 on supj=1,...,N(γ) |D(fj) − D̂n(fj)|. Choose G = {gj :
j = 1, ..., N}, where

gj(x) = (fj(x)− f ∗(x))2.
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Then it holds that

E[gj(X1)2] ≤ (2F )2D(fj), ‖gj‖∞ ≤ 4F 2 =: M.

Thus for W := supj=1,...,N(γ)
n(D(fj)−D̂n(fj))

2FD(fj)1/2+M
√
H(γ)
n

, we have that

EW ≤ 8
√
H(γ)n, E[W 2] ≤ 33

√
H(γ)n. (87)

We conclude that

|D(f̂n)− D̂n(f̂n)| ≤ |D(fĵ)− D̂n(fĵ)|+ 8Fγ

≤
|D(fĵ)− D̂n(fĵ)|

2FD(fĵ)
1/2 +M

√
H(γ)
n

· {2FD(fĵ)
1/2 +M

√
H(γ)

n
}+ 8Fγ

≤ |W |
n
·
{

2FD(fĵ)
1/2 +M

√
H(γ)

n

}
+ 8Fγ.

By the Cauchy Schwarz inequality, we have E[UV ] ≤ E[U2]1/2E[V 2]1/2 and N ∈ N:

|A1| ≤ E
∣∣D(f̂n)− D̂n(f̂n)

∣∣
≤ 1

n
E[W 2]1/2 · 2F E[D(fĵ)]

1/2︸ ︷︷ ︸
≤E[D(f̂n)]1/2+γ

+
E|W |
n
·M
√
H(γ)

n
+ 8Fγ

(87)

≤ 20
(√H(γ)

n
FE[D(f̂n)]1/2 + F 2H(γ)

n
+ γ · F

√
H(γ)

n︸ ︷︷ ︸
≤ 1

2
γ2+ 1

2
F 2H(γ)

n

+Fγ
)
.

2ab≤a2+b2

≤
a=10

√
NF

√
H(γ)
n

,b= 1√
N
E[D(f̂n)]1/2

1

N
ED(f̂n) + 100

[
(N + 1)F 2H(γ)

n
+ (γ2 + Fγ)

]
(88)

Step 3: Derivation of an upper bound for the second summand in (86). It
holds that

|A2| ≤ E
∣∣∣ 2
n

n∑
i=1

εi(f̂n(Xi)− f ∗(Xi))
∣∣∣

≤ E
∣∣∣ 2
n

n∑
i=1

εi(fĵ(Xi)− f ∗(Xi))
∣∣∣+

2

n

n∑
i=1

E|εi|︸︷︷︸
≤E[ε21]1/2≤v

· ‖fĵ − f̂n‖∞︸ ︷︷ ︸
≤γ

. (89)

Define

Wj :=

∑n
i=1 εi(fj(Xi)− f ∗(Xi))(

1
n

∑n
i=1(fj(Xi)− f ∗(Xi))2

)1/2
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Then we have

E
∣∣∣ 1
n

n∑
i=1

εi(fĵ(Xi)− f ∗(Xi))
∣∣∣

≤ 1

n
E
[
Wĵ ·

( 1

n

n∑
i=1

(fĵ(Xi)− f ∗(Xi))
2
)1/2]

CSU

≤ 1

n
E[ max

j=1,...,N(γ)
W 2
j ]1/2︸ ︷︷ ︸

=E[E[maxj=1,...,N(γ) W
2
j |X1,...,Xn]]

·E
[( 1

n

n∑
i=1

(fĵ(Xi)− f ∗(Xi))
2
)]1/2

︸ ︷︷ ︸
≤E[( 1

n

∑n
i=1(f̂n(Xi)−f∗(Xi))2)]1/2+γ

Lemma 7.11

≤ 2
{√H(γ)

n
· v
}
·
{
E[D̂n(f̂n)]1/2 + γ

}
= 2v ·

√
H(γ)

n
· E[D̂n(f̂n)]1/2 + 2v ·

√
H(γ)

n
· γ.

Let N ∈ N (N is chosen later large enough such that we can rearrange the terms in
the final implicit equation for the excess Bayes risk). Plugging in this upper bound into
(89), we obtain

|A2| ≤ E
∣∣∣ 1
n

n∑
i=1

εi(f̂n(Xi)− f ∗(Xi))
∣∣∣

≤ 4v ·
√
H(γ)

n
· E[D̂n(f̂n)]1/2 + 4v ·

√
H(γ)

n
· γ︸ ︷︷ ︸

≤2γ2+2v2H(γ)
n

+2vγ

4ab≤4a2+b2

≤
a=v
√
N
√
H(γ)
n

,b= 1√
N
E[D̂n(f̂n)]1/2

1

N
E[D̂n(f̂n)]︸ ︷︷ ︸

≤|ED̂n(f̂n)−ED(f̂n)|+ED(f̂n)

+
(
2 +N

)
v2H(γ)

n
+ 2(γ2 + vγ)

≤ 1

N
|A1|+

1

N
ED(f̂n) +

(
2 +N

)
v2H(γ)

n
+ 2(γ2 + vγ).

(90)

Step 4: Summarizing the upper bounds. For γ ≤ 1, we have γ2 ≤ γ. Therefore,

ER(f̂n)−R(f)
(90),(86)

≤ (1 +
1

N
)|A1|+

1

N
ED(f̂n) +

(
2 +N

)
v2H(γ)

n
+ 2(1 + v)γ

(88),D(f)=R(f)−R(f∗)

≤
( 2

N
+

1

N2

)
· ED(f̂n)

+c(N) ·
{

(F + v)2H(γ)

n
+ (F + v + 1) · γ

}
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with suitable chosen c(N) > 0 only dependent on N ∈ N. Plugging in this result into
(85) and rearranging terms leads to

ER(f̂n)−R(f ∗) ≤
(

1− 2

N
− 1

N2

)−1[
{R(f)−R(f ∗)}

+c(N) ·
{

(F + v)2H(γ)

n
+ (F + v + 1) · γ

}]
.

Choosing N large enough such that (1− 2
N
− 1

N2 )−1 ≤ 2 concludes the proof.

Lemma 7.10. Let Z1, ..., Zn be i.i.d. random variables with values in Z. Let G ⊂
{g : Z → R measurable} such that for all g ∈ G, it holds that ‖g‖∞ ≤ M . Define
H := log(|G|+ 1), and

W := sup
g∈G

∣∣∑n
i=1{g(Zi)− Eg(Zi)}

∣∣
E[g(Z1)2]1/2 +M

√
H
n

.

Then for all |G| ≥ 2, it holds that

EW ≤ 8
√
nH, E[W 2] ≤ 33nH.

Proof. Put g̃ := g

E[g(Z1)2]1/2+M
√

H
n

. Then we have

E[g̃(Z1)2] ≤ E[g(Z1)2]

E[g(Z1)2]
≤ 1, ‖g̃‖∞ ≤

‖g‖∞
M
√

H
n

≤
√
n

H
.

Theorem 6.13 implies that

EW = E sup
g∈G

∣∣∣ n∑
i=1

{g̃(Zi)− Eg̃(Z1)}
∣∣∣ ≤ 4 ·

{
1 ·
√
nH +

√
n

H
·H
}

= 8
√
nH.

The second part regarding the upper bound for E[W 2] is a little bit more elaborated
and is left as an exercise.

Lemma 7.11 (Maximum of normal distributions). Let Z1, ..., Zn ∼ N(0, v2) be i.i.d.
and aij ∈ R, i = 1, ..., n, j = 1, ..., N . Let

Wj :=
1

v
√
n

∑n
i=1 aijZi(

1
n

∑n
i=1 a

2
ij

)1/2
.
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Then it holds that

E max
j=1,...,N

|Wj| ≤ 2
√

log(N + 1), E max
j=1,...,N

|Wj|2 ≤ 4 log(N + 1).

Proof. This is left as an exercise.

7.4 Convergence rate of the neural network algorithm

We use the oracle inequality to derive a convergence rate for the neural network algo-
rithm. We first derive an upper bound for H(γ) = logN(γ,F(L, p, s, F ), ‖ · ‖∞) for a
given γ > 0.

Lemma 7.12. (i) Define V :=
∏L+1

l=0 (pl + 1), Then it holds that

N(γ,F(L, p, s, F ), ‖ · ‖∞) ≤ (2γ−1V 2(L+ 1))s+1.

(ii) Let s ≥ 2, L ≥ 1. Then there exists some universal constant c > 0 such that

H(γ) ≤ c · s ·
{
L log(s) + log(γ−1) + log(p0pL+1)

}
.

Proof. This is left as an exercise.

Definition 7.13 (Model assumption: Bayes rule is continuously differentiable (β = 1)).
f ∗ : [0, 1]d → R is continuously differentiable with ‖f ∗‖∞ +

∑d
j=1 ‖∂jf ∗‖∞ ≤ K.

Then we have the following convergence rate.

Theorem 7.14 (Convergence rate of neural networks). Suppose that the model as-
sumptions of Definition 7.8 and Definition 7.13 hold. Define

N = dmax{2d, K + 1} · n
d

2+d e.

Then there exist universal constants c1, c2, c3, c4 > 0, such that
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• F ≥ K,

• L ≥ c1 log(n) log(d),

• c323dN log(n) ≥ s ≥ c223dN log(n),

• ∀l = 1, ..., L: pl ≥ c4dN ,

implies

ER(f̂n)−R(f ∗) ≤ C · 95d · log(n)2L · n−
2

2+d ,

where C is a constant only depending on F,K, v.

Proof. We combine the statements from Theorem 7.7, Theorem 7.9 and Lemma 7.12.
Theorem 7.9 implies that

ER(f̂n)−R(f ∗) ≤ 2 inf
f∈F(L,p,s,F )

{
R(f)−R(f ∗)

}
+c ·

{
(F +v)2 ·H(γ)

n
+(F +v) ·γ

}
. (91)

Let m = dlog2(n)e.
Theorem 7.7 implies that there exists a network f̃ ∈ F(L, p, s,∞) with the given size (to
meet the condition on s, we make use of the fact that c23d ≥ 22dd2 log(d) holds uniformly
in d for some universal constant c) such that

‖f̃ − f ∗‖∞ ≤ (2K + 1)3d+1N 2−m︸︷︷︸
≤n−1

+2KN−1/d.

Caution: Up to now, f̃ may not be bounded by F . Define ˜̃f := f̃ ·min{‖f
∗‖∞
‖f̃‖∞

, 1}. Then

it holds that

‖ ˜̃f‖∞ ≤ ‖f ∗‖∞ ≤ K ≤ F, ‖ ˜̃f − f ∗‖∞ ≤ ‖ ˜̃f − f̃‖∞ + ‖f̃ − f ∗‖∞ ≤ 2‖f̃ − f ∗‖∞.

We therefore have ˜̃f ∈ F(L, p, s, F ) and ˜̃f still enjoys the approximation properties of
f̃ . We conclude that

inf
f∈F(L,p,s,F )

{
R(f)−R(f ∗)

}
= R( ˜̃f)−R(f ∗) = E[( ˜̃f(X)− f ∗(X))2]

≤ ‖ ˜̃f − f ∗‖2
∞ ≤ 4

[
(2K + 1)3d+1N

n
+K2βN−β/d

]2
(a+b)2≤2a2+2b2

≤ 8(2K + 1)26d+1
(N
n

)2
+ 32K2N−2/d. (92)
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Lemma 7.12 with γ = n−1 implies that with some updated universal constants c′, c′′ > 0,
it holds that

H(γ)

n
≤ c′ · s

n
·
{
L log(s) + log(n) + log(d)

}
L≥c1 log(n) log(d)

≤ c′′ · sL
n

log(s). (93)

Plugging in (92), (93) into (91) and summarizing the constants K,F, v into a new con-
stant C yields

ER(f̂n)−R(f ∗) ≤ C ·
{

6d+1
(N
n

)2
+N−2/d +

sL

n
log(s)

}
N≤2dnd⇒log(s)≤C(β+1)d log(n)

≤ C ·
{

6d+1
(N
n

)2
+N−2/d +

NL

n
24d log(n)2

}
The above terms now reflect a trade off between N

n
and N−2/d with respect to N . We

can balance these terms with respect to n if we choose N ≈ n
d

2+d . This is exactly the
rate of N given in the assumptions. The additional factors given in the assumptions are
due to the conditions in Theorem 7.7. Plugging in N into the above inequality yields

ER(f̂n)−R(f ∗) ≤ C · 96d · log(n)2L · n−
2

2+d .

Remark: The number of layers should be chosen as small as possible to obtain a good
upper bound for the convergence rate. The smallest possible value L = c1 log(n) log(d)
yields

ER(f̂n)−R(f ∗) ≤ C · log(d)96d · log(n)3 · n−
2

2+d .

Obviously, this upper bound is quite bad. On the one hand, the factor n−
2

2+d suffers
from the curse of dimension; on the other hand, the factor 96d grows exponentially in
d. If we only know that f ∗ is continuously differentiable, we therefore should not expect
any ’wonders’ from neural network algorithms. The power of neural networks lies in the
fact that they can adapt quite well to more specific structures (which is theoretically
founded by the above oracle inequality). We show this in the special case of an reduced
additive model.

Definition 7.15 (Model assumption: additive model). Suppose that there exist mea-
surable hj : [0, 1]→ [0, 1

k
], j ∈ {1, ..., k} with supj=1,...,k{‖hj‖∞ + ‖h′j‖∞} ≤ K and

f ∗(x) =
k∑
j=1

hj(xj), x = (x1, ..., xd) ∈ Rd.
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Remark: We restrict ourselves to functions hj with values in [0, 1
k
] only for simplicity

and to meet the assumptions of Theorem 7.7 in the following theorem.

Theorem 7.16 (Convergence rate of the neural network algorithm). Suppose that the
model assumptions from Definition 7.8 and Definition 7.15 hold. Define

N = dmax{(k + 1)k, K + 1} · n1/3e.

Then there exist universal constants c1, c2, c3, c4 > 0 such that

• F ≥ 1,

• L ≥ c1 log(n) log(k),

• c3(3k)2kN log(n) ≥ s ≥ c2(3k)2kN log(n),

• ∀l = 1, ..., L: pl ≥ c4kN ,

implies
ER(f̂n)−R(f ∗) ≤ C · (3k)3k · L · log(n)2 log(d)n−2/3,

where C is a constant only depending on F,K, v.

Proof. The most important change compared to the proof of Theorem 7.14 is a different
application of the approximation result. The model assumption of Definition 7.15 can
be written as follows:

f ∗ = g1 ◦ g0,

where g0(x) := (h1(x1), ..., hk(xk)), g1(y) =
∑k

j=1 yj.
We now apply Theorem 7.7 with r = 1 and k times (that is, for each hj). The
networks obtained are stacked up. This leads to a network where the width vector
p and the number of non-zero entries s is multiplied with k. We therefore obtain
g̃0 ∈ F(L(0), p(0), s(0),∞) such that

sup
j=1,...,k

‖g̃0j − g0j‖∞ ≤ (2K + 1)32N

n
+ 2KN−1

and

p(0) = (d, 12kN, ..., 12kN, k),

L(0) = 8 + (dlog2(n)e+ 5)(1 + dlog2(1)e),
s(0) = 94k · 22N(dlog2(n)e+ 6)(1 + dlog2(1)e).
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Define w(x1, ..., xk) := (1 − (1 − x1)+, ..., 1 − (1 − xk)+) (this corresponds to a network
with 2 layers and 4 · k non-zero parameters).
Theorem 7.7 applied with r = k, K = 2k, β ≥ 1 arbitrarily chosen (g1 is infinitely often
differentiable with

∑
0≤|α|≤β ‖∂αg1‖∞ = ‖g1‖∞+

∑k
j=1 ‖∂jg1‖∞ ≤ 2k) implies that there

exists g̃1 ∈ F(L(1), p(1), s(1),∞) such that

‖g̃1 − g1‖∞ ≤ (4k + 1)3k+1N

n
+ 4kN−β/k

with

p(1) = (k, 12kN, ..., 12kN, 1),

L(1) = 8 + (dlog2(n)e+ 5)(1 + dlog2(k)e),
s(1) = 94k2 · (β + 1)2kN(dlog2(n)e+ 6)(1 + dlog2(k)e).

Composition of the networks yields a new network

f̃ := g̃1 ◦ (w ◦ g̃0) ∈ F(L(0) + L(1) + 3︸ ︷︷ ︸
=:L

, (d, 12kN, ..., 12kN, 1)︸ ︷︷ ︸
=:p

, s(0) + s(1) + 4k︸ ︷︷ ︸
=:s

,∞).

Note that f ∗ = g1 ◦ w ◦ g0. We therefore have (with | · |∞ denoting the maximum norm
in Rk)

|f ∗(x)− f̃(x)| = |g1(g0(x))− g1(g̃0(x))|+ |g1(w(g̃0(x)))− g̃1(w(g̃0(x)))|
≤ k · |g0(x)− g̃0(x)|∞ + |g1(w(g̃0(x())− g̃1(w(g̃0(x)))|

≤ k ·
{

(2K + 1)32N

n
+ 2KN−1

}
+ (4k + 1)3k+1N

n
+ 4kN−β/k.

As in the proof of Theorem 7.14, in particular by truncating the network so that it meets
the supremum norm F , we conclude with β = k and some constant C only depending
on K that

inf
f∈F(L,p,s,F )

{
R(f)−R(f ∗)

}
≤ 2

[
k ·
{

(2K + 1)32N

n
+ 2KN−1

}
+ (4k + 1)3k+1N

n
+ 4kN−1

]2
≤ C

{
k232k

(N
n

)2
+ k2N−2

}
.

By Lemma 7.12 applied with γ = n−1, we obtain with some updated universal constants
c′, c′′ > 0 that

H(γ)

n
≤ c′ · s

n
·
{
L log(s) + log(n) + log(d)

}
L≥c1 log(n) log(k)

≤ c′′ · log(d)
sL

n
log(s).
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Plugging in these results into (91) yields with some constant C > 0 only dependent on
K,F, v that

ER(f̂n)−R(f ∗)

≤ C ·
{
k232k

(N
n

)2
+ k2N−2 + log(d)

sL

n
log(s)

}
s≤c·k2(k+1)2k log(k)N log(n)

≤ C ·
{
k232k

(N
n

)2
+ k2N−2 + log(d)(2k)3kLN

n
log(n)2

}
.

Choose N as given in the theorem, then with some updated constant C > 0 only
dependent on K,F, v, we obtain the final result

ER(f̂n)−R(f ∗) ≤ C · (3k)3k · L · log(n)2 log(d)n−2/3.

Remark: Choosing L minimal, we obtain that

ER(f̂n)−R(f ∗) ≤ C · (3k)4k · log(n)3 log(d)n−2/3.

Note that d only enters the rate via log(d) which comes from Lemma 7.12(ii) through
the term log(p0pL+1). Now, only the reduced dimension k enters the rate exponentially
via (3k)4k. If k is small, this exponential factor is eliminated by n−2/3. Therefore, we
only have to pay with a factor log(d) that we do not know the structure of f ∗.

7.5 Exercises

Task 28 (Approximation theory for neural networks). Let σ(x) = max{x, 0} denote
the ReLU activation function. The goal of this task is to give an idea of the proof of
Theorem 7.7. For k ∈ N, define

Tk : [0, 22−2k]→ [0, 2−2k], Tk(x) := σ(
x

2
)− σ(x− 21−2k),

and Rk : [0, 1]→ [0, 2−2k], Rk := Tk ◦ Tk−1 ◦ ... ◦ T1.

1. Plot a graph of R1, R1 +R2 and R1 +R2 +R3.

2. With induction one can show for x ∈ [0, 1] and m ∈ N that∣∣∣x · (1− x)−
m∑
k=1

Rk(x)
∣∣∣ ≤ 2−m.

Show that there exists a network fm ∈ F(m, (1, 2, 3, ..., 3, 1)) with

fm(x) =
m∑
k=1

Rk(x).

Hint: Use the following sketch
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3. Define g(x) = x · (1− x). Show that

x · y = g(
x− y + 1

2
)− g(

x+ y

2
) +

x+ y

2
− 1

4
= xy.

How can this identity be used to approximate products x · y with networks?

4. One can show that there exists a network fm ∈ F(m+4, (2, 6, 6, ..., 6, 1)) such that
|fm(x, y)− xy| ≤ 2−m for all x, y ∈ [0, 1]. Show that there exists a network

fm,r ∈ F((m+ 5)dlog2(r)e, (r, 6r, 6r, ..., 6r, 1))

with ∣∣fm,r(x)−
r∏
j=1

xj
∣∣ ≤ r22−m, x = (x1, ..., xr) ∈ [0, 1]r.

Hint: Use the following sketch
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5. For β-times differentiable f : [0, 1]r → R, there exists for each a ∈ [0, 1]r a Taylor
representation

Ta(x) :=
∑

α∈Nr0:0≤|α|≤β−1

(∂αf)(a) · (x− a)α

α!
,

where xα := xα1
1 · ... · xαrr and α! := α1! · ... · αr!. Show the following statement: If

‖∂αf‖∞ ≤ K for all α ∈ Nr
0 with |α| = β, then one has

|f(x)− Ta(x)| ≤ Ker · |x− a|β∞.

6. Let M ∈ N and D(M) := {a` := (
`j
M

)j=1,...,r : ` = (`1, ..., `r) ∈ {0, 1, ...,M}r} be a
grid. Let

T (x) :=
∑

a∈D(M)

Ta(x) ·
r∏
j=1

(
1−M · |xj − aj|

)
+

Show that
‖f − T‖∞ ≤ KerM−β.

Hint: Use that for all x ∈ [0, 1]r, it holds that
∑

a∈D(M)

∏r
j=1

(
1−M ·|xj−aj|

)
+

= 1.

7. Discussion: How one can use the results of (d) and (f) to prove Theorem 7.7?

Task 29 (Maximal inequalities based on Bernstein’s inequality, Lemma 7.10(ii)). Let
Z1, ..., Zn be i.i.d. random variables with values in some space Z and G ⊂ {g : Z →
R measurable}. Suppose that there exists M ≥ 0 such that for all g ∈ G, ‖g‖∞ ≤ M .
Define H := log(|G|+ 1) and

W := sup
g∈G

|
∑n

i=1{g(Zi)− Eg(Zi)}

E[g(Z1)2]1/2 +M
√

H
n

.

We aim to show that E[W 2] ≤ 33nH. Let t0 > 0.

1. Show that

E[W 2] ≤ t20 + 2

∫ ∞
t0

tP(W ≥ t)dt.

Hint: It holds that E[W 2] =
∫
P(W 2 ≥ u)du.

2. Define g̃ := g

E[g(Z1)2]1/2+M
√

H
n

. Show with Bernstein’s inequality (P
(∣∣∑n

i=1(Xi −

EX1)
∣∣ ≥ x

)
≤ 2 exp

(
− x2

2nE[X2
1 ]+ 2

3
‖X1‖∞·x

)
for i.i.d. X1, ..., Xn) that for any t ≥

3
√
nH,

P(W ≥ t) ≤ 2|G| · exp
(
− 3t

4
√

n
H

)
.
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3. Conclude that
E[W 2] ≤ 33nH.

Hint: Define t0 = 3
√
nH and a := 3

4

√
H
n

. With partial integration, one can show

that
∫
te−atdt = −(a−2 + a−1t)e−at.

Task 30 (Maximal inequality for normal distributions, Lemma 7.11). Let Z1, ..., Zn ∼
N(0, v2) be i.i.d. and aij ∈ R, i = 1, ..., n, j = 1, ..., N . Let

Wj :=
1

v
√
n

∑n
i=1 aijZi(

1
n

∑n
i=1 a

2
ij

)1/2
.

Our aim it to show that

E max
j=1,...,N

|Wj| ≤ 2
√

log(N + 1), E max
j=1,...,N

|Wj|2 ≤ 4 log(N + 1).

1. Show that Wj ∼ N(0, 1).

2. Let ϕ2(x) = exp(x2)−1. Show that ϕ2(Emaxj=1,...,N
|Wj |

2
) ≤ N and Emaxj=1,...,N

|Wj |
2
≤

2
√

log(N + 1).

Hint: For Wj ∼ N(0, 1), one has E exp(
W 2
j

4
) =
√

2.

3. Let ϕ1(x) = exp(x)−1. Show that ϕ1(Emaxj=1,...,N
|Wj |2

4
) ≤ N and Emaxj=1,...,N |Wj|2 ≤

4 log(N + 1).

Task 31 (Covering Numbers of neural networks, Lemma 7.12). In this task, we upper
bound the log covering numbers H(γ) = logN(γ,F(L, p, s, F ), ‖ · ‖∞) of the class of
neural networks

F(L, p, s,∞) :=
{
f ∈ F(L, p) :

L∑
l=0

‖W (l)‖0 +
L∑
l=1

‖v(l)‖0 ≤ s, ∀l : ‖W (l)‖∞ ≤ 1, ‖v(l)‖∞ ≤ 1
}
,

where

F(L, p) =
{
g : Rp0 → RpL+1 : g(x) = W (L) · σv(L)

(
W (L−1) · σv(L−1)

(
. . .W (1) · σv(1)

(
W (0) · x

)
. . .
))

W (l) ∈ Rpl×pl+1 (l = 0, ..., L), v(l) ∈ Rpl (l = 1, ..., L)
}
.

1. Show that each F(L, p) can be written as {fθ : θ ∈ Θpre} with Θpre ⊂ [−1, 1]T ,
where

T =
L∑
l=0

plpl+1 +
L∑
l=1

pl.
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2. Show that F(L, p, s,∞) = {fθ : θ ∈ Θ}, where

Θ ⊂
⋃

S⊂{1,...,T}:|S|≤s

ΘS, ΘS = {θ ∈ [−1, 1]T : ∀j ∈ Sc : θj = 0}.

3. Let a > 0 and S ⊂ {1, ..., T}, |S| ≤ s. Show that there exists Θ̃S ⊂ [−1, 1]T with

∀θ ∈ ΘS ∃θ̃ ∈ Θ̃S : ‖θ − θ̃‖∞ ≤ a, |Θ̃S| ≤
⌊

2

a

⌋s
.

Define Θ̃ :=
⋃
S⊂{1,...,T}:|S|≤s Θ̃S. Then the following property is fulfilled:

∀θ ∈ Θ ∃θ̃ ∈ Θ̃ : ‖θ − θ̃‖∞ ≤ a.

Show the following statements:

(d) T ≤ V :=
∏L+1

l=0 (pl + 1) and

|Θ̃| ≤
(2V

a

)s+1
.

Hint: It holds that

(
T
k

)
≤ T k.

For fθ ∈ F(L, p, s, F ) choose θ̃ ∈ Θ̃ with ‖θ − θ̃‖∞ ≤ a. We aim to show that ‖fθ −
fθ̃‖∞ ≤ a · (L+ 1) · V . (*)

(e) Show that (*) and (d) imply:

N(γ,F(L, p, s, F ), ‖ · ‖∞) ≤ (2γ−1V 2(L+ 1))s+1.

Define for θ = (v1, ..., v(L),W (0), ...,W (L)):

Ak+
θ (x) = σv(k)W (k−1)σv(k−1) ...W (1)σv(1)W (0)x

and
Ak−θ (y) = W (L)σv(L) ...W (k)σv(k)W (k−1)x.

(f) Show that |Ak−θ (x)− Ak−θ (x′)| ≤
(∏L

l=k−1 pl
)
· ‖x− x′‖∞.

Hint: The row-sum norm ‖A‖Z of a matrix A satisfies ‖Ax‖∞ ≤ ‖A‖Z‖x‖∞.

(g) Show that |Ak+
θ (x)|∞ ≤

∏k−1
l=0 (pl + 1).

(h) Conclude from (f),(g) that

|fθ(x)− fθ̃(x)| ≤ a · (L+ 1) · V.
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(i) Show that

N(γ,F(L, p, s,∞), ‖ · ‖∞) = N(γ,F(L, (p0, p1 ∧ s, ..., pL ∧ s, pL+1), s,∞), ‖ · ‖∞)

(j) Let s ≥ 2, L ≥ 1. Show that there exists a universal constant c > 0 such that
H(γ) = logN(γ,F(L, p, s,∞), ‖ · ‖∞) satisfies

H(γ) ≤ c · s ·
{
L log(s) + log(γ−1) + log(p0pL+1)

}
.
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8 Solutions of the exercises

8.1 Solutions of Chapter 2

Solution 1 (Solution of Task 1). (a) Markov’s inequality yields

P(‖Ae‖2 ≥ σ‖A‖F
√
t) ≤ E[‖Ae‖2

2]

(σ‖A‖F
√
t)2
.

Here, we have

E[‖Ae‖2
2] = E[tr(AeeTAT )] = tr(AE[eeT ]AT ) = tr(Aσ2Id×dA

T ) = σ2tr(AAT ) = σ2‖A‖2
F .

Plugging in this result into the first inequality yields

E[‖Ae‖2
2]

(σ‖A‖F
√
t)2

=
1

t
.

(b) Despite the constant c2, the expressions in the probability are the same for t ≥ 1.
The lemma of the lecture yields a much better estimate for the probability of
this event, since for large t, the term e−t decays much faster than 1

t
. However,

the lemma also needs stronger assumptions while we only needed the existence of
second moments of e (no Gaussianity assumption) to obtain the result in (a).

(c) With ‖Σ̂− Σ‖ ≤ ‖Σ̂− Σ‖F and Markov’s inequality, we have

P(‖Σ̂− Σ‖ ≥ x) ≤ E[‖Σ̂− Σ‖2
F ]

x2
.
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It holds that

E[‖Σ̂− Σ‖2
F ] =

d∑
j,k=1

E
[
(Σ̂jk − Σjk)

2
]

=
d∑

j,k=1

E
[( 1

n

n∑
i=1

XijXik − E[XijXik]
)2]

=
d∑

j,k=1

Var
( 1

n

n∑
i=1

XijXik

)

=
d∑

j,k=1

1

n2

n∑
i=1

Var(XijXik)

=
d∑

j,k=1

1

n

{
E[X2

1jX
2
1k]− E[X1jX1k]

}
Hint
=

1

n

d∑
j,k=1

{
ΣjjΣkk + 2Σ2

jk − Σjk

}
=

1

n

{ d∑
j,k=1

ΣjjΣkk +
d∑

j,k=1

Σ2
jk

}
=

1

n

{
tr(Σ)2 + ‖Σ‖2

F

}
.

This proves the claim.

(d) Substitute x′ := 1√
n
{tr(Σ)2 + ‖Σ‖2

F}1/2x. Then we have with (c):

P
(
‖Σ̂− Σ‖ ≥ 1√

n
{tr(Σ)2 + ‖Σ‖2

F}1/2x
)

≤ P
(
‖Σ̂− Σ‖ ≥ x′

)
≤ 1

n

{tr(Σ)2 + ‖Σ‖2
F}

(x′)2
=

1

x
.

(e) If d ≤ n and n ≥ x ≥ d (these we simply assume here), then the statement of the
lemma reads

P
(
‖Σ̂− Σ‖ ≥ c1‖Σ‖ ·

√
x

n

)
≤ e−x.

The statement from (d) is

P
(
‖Σ̂− Σ‖ ≥ {tr(Σ)2 + ‖Σ‖2

F}1/2

√
x

n

)
≤ 1

x
.
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We therefore have two disadvantages compared to the statement of the lemma:
Again, 1

x
is a much larger term than e−x for large x. Moreover, the lemma compares

the rate with ‖Σ‖ which is much smaller than {tr(Σ)2 + ‖Σ‖2
F}1/2 which appears

in (d). For instance, if Σ = Id×d, then one has ‖Σ‖ = 1, but {tr(Σ)2 + ‖Σ‖2
F}1/2 =√

2d.

Solution 2 (Solution of Task 2). (a) Each component βj of β corresponds to the in-
fluence of Xj towards Y . In the modified model, β1 corresponds to the expectation
of Y (and not to any influence of X, since X1 is constantly 1).
The aim of penalizing β is to choose only the components of X which have an in-
fluence on Y . If Y has nonzero expectation, the first component X1 = 1 is always
necessary. Therefore, β1 should not be penalized.

(b) For the objective function (here denoted with F ), we have

F (β) = R̂n(β) + λ ·
d∑
j=2

β2
j =

1

n
‖Y− Xβ‖2

2 +
d∑
j=2

β2
j .

Differentiating and setting it equal to zero yields (with E = diag(0, 1, ..., 1) ∈
Rd×d):

0 = ∇βF (β) = − 2

n
XT (Y− Xβ) + 2λEβ = − 2

n
XTY + 2(

1

n
XTX + λE)β.

Thus β̂ = (XTX + nλE)−1XTY.

Solution 3 (Solution of Task 3). (a) Markov’s inequality yields

P(X ≥ t) ≤ EecX

ect
= e

c2

2
−ct.

Here we have used that for X ∼ N(0, 1), it holds that EecX = e
c2

2 .
Plugging in c = t yields

P(X ≥ t) ≤ e−
t2

2 .

(b) Here we use that X
σ
∼ N(0, 1). With (a), we conclude that

P(|X| > σt) ≤ P(X > σt) + P(−X > σt) = P(
X

σ
> t) + P(−X

σ
> t) ≤ 2e−

t2

2 .

Define t′ :=
√

2t. Then we have

P(|X| > σ
√

2t) = P(|X| > σt′) ≤ 2e−
(t′)2

2 = 2e−t.
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(c) If X ∼ N(0, σ2), the statement in (a) reads P(X ≥ t) ≤ e−
t2

2σ2 .

The central limit theorem yields for n→∞ that 1√
n

∑n
i=1(Xi−EXi)

d→ N(0, σ2),
thus

P
( 1√

n

n∑
i=1

(Xi − EXi) ≥ t
)
→ P(X > t)

s.o.

≤ e−
t2

2σ2 .

Bernstein’s inequality provides the corresponding non-asymptotic statement (with-
out n→∞) via

P
( 1√

n

n∑
i=1

(Xi − EXi) ≥ t
)
≤ exp

(
− 1

2

t2

σ2 + Mt√
n

)
.

One can see that the above expression converges to e−
t2

2σ2 for n → ∞. In this
sense, Bernstein’s inequality can be considered as ’optimal’ since it converges to
the non-avoidable upper bound given by the Gaussian limit. If the distribution of
Xi is unknown, Bernstein’s inequality therefore yields a very good upper bound,
in particular for large n.

(d) Due to a
b+c
≥ 1

2
min{a

b
, a
c
} for a, b, c > 0 we have

exp
(
− 1

2

x2

σ2 + Mx√
n

)
≤ exp

(
− 1

4
min{x

2

σ2
,

x

M/
√
n
}
)
.

We conclude that

P
( n∑
i=1

(Xi − EXi) ≥
√
nσ
√
t+Mt

)
= P

( 1√
n

n∑
i=1

(Xi − EXi) ≥ σ
√
t+

M√
n
t︸ ︷︷ ︸

=:x′

)

≤ exp
(
− 1

4
min{(x′)2

σ2
,

x′

M/
√
n
}
)

≤ e−
t
4 .

The last inequality holds due to (x′)2 ≥ tσ2 (only use the first summand of x′) and
x′ ≥ M√

n
t (only use the second summand of x′).

(e) Choose t = 4 log(1
δ
). Then we conclude with (d):

P
( n∑
i=1

(Xi − EXi) ≥ 2
√
nσ

√
log(

1

δ
) + 4M log(

1

δ
)
)
≤ e−t/4 = δ.

We conclude that with probability ≥ 1− δ,
n∑
i=1

(Xi − EXi) ≤ 2
√
nσ

√
log(

1

δ
) + 4M log(

1

δ
).
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Solution 4 (Solution of Task 4). (a) The LS estimator only works well if d is much
smaller than n. Instead, the LASSO estimator only needs that s log(d) is much
smaller than n (s denotes the number of non-zero components of β∗). Therefore,
the LASSO estimator behaves like a LS estimator if the non-zero components of
β∗ would be known, up to the additional factor log(d).
In opposite to the LS estimator, the convergence rate of the LASSO estimator
contains Λmin(Σ) instead of λmin(Σ).

(b) The reason is the proof technique where a statement about ‖Σ̂1/2(β̂ − β∗)‖2
2 is

derived from an upper bound of ‖(β̂ − β∗)S‖1. Therefore, the convergence rate of
the excess Bayes risks can only be as good as the convergence rate of ‖(β̂−β∗)S‖1.
The proof technique therefore incorporates the estimation quality of β̂ to derive a
statement about the quality of the algorithm. The estimation quality of β̂ however
is always dependent of Σ.

(c) For v ∈ C, we have
vTΣv = vTv = ‖v‖2

2 ≥ ‖vS‖2
2

⇒ Λmin(Σ) ≥ 1.

(d) The assumption on Σ in (a) means that all components of X are independent.
This is not realistic since for large d, the entries of X might be strongly correlated
in practice. As an example, consider Y as the age of a person. X may contain
’measurable’ quantities like the show size, the body height, the weight and so
on. Obviously, weight and body height are correlated already. The more data is
collected from a specific person, the more probable it is that these data contains
correlations. It may even happen that some components of X are perfectly cor-
related in the sense that one component can be derived from other components.
Then Σ would even not be invertible.
(the following statement holds: If there exists some c ∈ Rd with cTX = 0, then Σ
is not invertible).

(e) It holds that
λmin(Σ) = 1− (d− 1)1/2ρ > 0

if and only if ρ < (d− 1)−1/2. Thus, ρ (which can be interpreted as the strength of
correlations) has to be very small to guarantee that Σ is invertible. As an example,
if ρ < 1

2
(d− 1)−1/2, then we have λmin(Σ) ≥ 1

2
.

(f) For v ∈ C, we have ‖v‖1 = ‖vS‖1 + ‖vSc‖1 ≤ 4‖vS‖1, thus

vTΣv =
d∑
j=1

v2
j + 2ρvd

d−1∑
j=1

vj ≥ ‖v‖2
2 − 2ρ‖v‖2

1 ≥ ‖v‖2
2 − 32ρ‖vS‖2

1

≥ ‖vS‖2
2 − 32ρs‖vS‖2

2 = (1− 32ρs)‖vS‖2
2.

164



8 Solutions of the exercises

⇒ Λmin(Σ) ≥ 1− 32ρs.
We therefore have Λmin(Σ) > 0 as long as ρ ≤ (32s)−1. As an example, if ρ ≤ 1

64s
,

then Λmin(Σ) ≥ 1
2
.

Contrary to the smallest eigenvalue λmin(Σ), the Restricted Eigenvalue Property
may only pose conditions on ρ dependent on s. For small s, the condition on ρ
from (f) is much weaker than the condition on ρ from (e).

Solution 5 (Solution of Task 5). (a) We have

P(Bc
1) ≤ P

(
∃j ∈ {1, ..., d}

n∑
i=1

X2
ij >

3n

2

)
≤ d · max

j∈{1,...,d}
P
( n∑
i=1

X2
ij >

3n

2

)
≤ d · E[etX

2
1j ]n

e3tn/2
≤ d · ((1− 2t)e3t)−n/2.

(b) With t = 1
4
, it holds that

P(Bc
1) ≤ d · (1

2
e3/4)−n/2 = d exp(−n

2
(
3

4
+ log(

1

2
)))

= d exp(−nc
2

)
n≥ 2

c
(log(d)+x)

≤ de− log(d)e−x = e−x.

Solution 6 (Solution of Task 6). First note that

P
( 2

n
‖eTX‖∞ ≥

λ

2

)
= P

(
max
j=1,...,d

1√
n

n∑
i=1

εiXij

∣∣∣ > λ
√
n

4

)
≤ d· max

j=1,...,d
P
(∣∣∣ 1√

n

n∑
i=1

εiXij

∣∣∣ > λ
√
n

4

)
.

This inequality will be used in (a)-(c).

(a) It holds that 1√
n

∑n
i=1 εiXij ∼ N(0, σ

2

n

∑n
i=1 X

2
ij) = N(0, σ2). Therefore, using

P(N(0, 1) > x) ≤ e−x
2/2, we have

P
(∣∣∣ 1√

n

n∑
i=1

εiXij

∣∣∣ > λ
√
n

4

)
≤ P(|N(0, 1)| > λ

√
n

4σ
) ≤ 2 exp

(
− 1

2

(λ√n
4σ

)2
)
.

(b) Markov’s inequality applied with g(x) = x2 yields

P
(∣∣∣ 1√

n

n∑
i=1

εiXij

∣∣∣ > λ
√
n

4

)
≤

E
[(

1√
n

∑n
i=1 εiXij

)2]
(
λ
√
n

4

)2 ,

and

E
[( 1√

n

n∑
i=1

εiXij

)2]
=

1

n

n∑
i=1

E[ε2
iX

2
ij] = σ2 · 1

n

n∑
i=1

X2
ij = σ2.

⇒

P
(∣∣∣ 1√

n

n∑
i=1

εiXij

∣∣∣ > λ
√
n

4

)
≤
( 4σ

λ
√
n

)2
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(c) Markov’s inequality applied with g(x) = xp yields

P
(∣∣∣ 1√

n

n∑
i=1

εiXij

∣∣∣ > λ
√
n

4

)
≤

E
[∣∣∣ 1√

n

∑n
i=1 εiXij

∣∣∣p](
λ
√
n

4

)p ,

and (using the hint)

E
[∣∣∣ 1√

n

n∑
i=1

εiXij

∣∣∣p] ≤ pp/2
( 1

n

n∑
i=1

E[|εi|p|Xij|p]2/p
)p/2

= pp/2µpp

( 1

n

n∑
i=1

X2
ij

)p/2
= (p1/2µp)

p.

⇒

P
(∣∣∣ 1√

n

n∑
i=1

εiXij

∣∣∣ > λ
√
n

4

)
≤
(4p1/2µp
λ
√
n

)p
.

(d) Markov’s inequality yields

P
(

max
j=1,...,d

∣∣∣ 1√
n

n∑
i=1

εiXij

∣∣∣ > λ
√
n

4

)
≤

E
[

maxj=1,...,d

∣∣ 1√
n

∑n
i=1 εiXij

∣∣]
(λ
√
n

4
)

.

Nemirovski’s inequality yields

E
[

max
j=1,...,d

∣∣ n∑
i=1

εiXij

∣∣] ≤ (8 log(2d))1/2 · E
[

max
j=1,...,d

n∑
i=1

ε2
iX

2
ij

]1/2

≤ (8 log(2d))1/2 · C · E
[ n∑
i=1

ε2
i

]1/2

= (8 log(2d))1/2 · Cσ
√
n

We conclude that

P
(

max
j=1,...,d

∣∣∣ 1√
n

n∑
i=1

εiXij

∣∣∣ > λ
√
n

4

)
≤ 4(8 log(2d))1/2Cσ

λ
√
n

.

8.2 Solutions of Chapter 3

Solution 7 (Solution of Task 7). (a) It holds that R̂n(β̂) ≤ R̂n(β∗), thus

R(β̂)−R(β∗) = R̂n(β̂)− R̂n(β∗)︸ ︷︷ ︸
≤0

−
{
R̂n(β̂)−R(β̂)− (R̂n(β∗)−R(β∗))

}
.

(b) It holds that β̃ − β∗ = T (β̂ − β∗), thus

‖Σ1/2(β̃ − β∗)‖2 = T · ‖Σ1/2(β̂ − β∗)‖2 ≤ γ.
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By convexity of β 7→ R̂n(β), we have

R̂n(β̃) ≤ T R̂n(β̂)︸ ︷︷ ︸
≤R̂n(β∗)

+(1− T )R̂n(β∗) ≤ R̂n(β∗),

that is, the statement from (a) also holds for β̃.
We obtain

R(β̃)−R(β∗) ≤
∣∣R̂n(β̃)−R(β̃)− (R̂n(β∗)−R(β∗))

∣∣
≤ sup

β:‖Σ1/2(β−β∗)‖2≤γ

∣∣(R̂n(β)−R(β))− (R̂n(β∗)−R(β∗))
∣∣.

(c) On A it holds that

‖Σ1/2(β̃ − β∗)‖2
2 = R(β̃)−R(β∗) ≤ Zγ ≤ aγ,

therefore
‖Σ1/2(β̃ − β∗)‖2 ≤ (aγ)1/2 ≤ γ

2
.

Using T · ‖Σ1/2(β̂ − β∗)‖2
see above

= ‖Σ1/2(β̃ − β∗)‖2, we obtain

γ‖Σ1/2(β̂ − β∗)‖2

γ + ‖Σ1/2(β̂ − β∗)‖2

≤ γ

2
.

Rearranging terms yields ‖Σ1/2(β̂ − β∗)‖2 ≤ γ.
Repeating the proof for β̂ instead of β̃ yields that on the event A, it holds that

R(β̂)−R(β∗) ≤ aγ.

(d) We have seen that A ⊂ {R(β̂)−R(β∗) ≤ aγ}. We conclude that

P(R(β̂)−R(β∗) > aγ) ≤ P(Ac).

(e) An elementary calculation yields

R̂n(β) =
1

n
‖ Y︸︷︷︸

=e+Xβ∗
−Xβ‖2

2 =
1

n
‖e‖2

2 +
2

n
e
TX(β∗ − β) +

1

n
‖X(β∗ − β)‖2

2︸ ︷︷ ︸
Xi determ.

= ‖Σ1/2(β− β∗)‖22

.

⇒
R̂n(β)−R(β) =

1

n
‖e‖2

2 +
2

n
e
TX(β∗ − β).

⇒
(R̂n(β)−R(β))− (R̂n(β∗)−R(β∗)) =

2

n
e
TX(β∗ − β).
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We therefore have

|Zγ| ≤
2

n
sup |eTX(β∗ − β)| = 2

n
sup |eTXΣ−1/2Σ1/2(β∗ − β)|

≤ 2

n
‖eTXΣ−1/2‖2 sup ‖Σ1/2(β∗ − β)‖2

≤ 2γ

n
‖eTXΣ−1/2‖2.

(f) It holds that

E|Zγ| =
2γ

n
E‖eTXΣ−1/2‖2 ≤

2γ

n
E[‖eTXΣ−1/2‖2

2]1/2.

Here,

E[‖eTXΣ−1/2‖2
2] = tr(Σ−1/2XT E[eeT ]︸ ︷︷ ︸

=σ2Id×d

XΣ−1/2) = nσ2tr(Σ−1/2ΣΣ−1/2) = ndσ2.

Thus

E|Zγ| ≤
2γ

n
·
√
ndσ = 2γσ(

d

n
)1/2.

(g) We want to guarantee that P(Ac) ≤ 1
t
. Markov’s inequality yields

P(Ac) ≤ EZγ
aγ
≤

2σ( d
n
)1/2

a
=

1

t
,

where the last equality holds if we choose a = 2σ( d
n
)1/2t.

We have to satisfy (aγ)1/2 ≤ γ
2
, that is, 2a1/2 ≤ γ1/2 or equivalently 4a ≤ γ.

We therefore choose γ = 4a.
We obtain the convergence rate

aγ = 4a2 = 16σ2 d

n
t2.

(h) It holds that

1

σ
√
n
e
TXΣ−1/2 =

1

σ
√
n

n∑
i=1

εi·(Σ−1/2Xi) ∼ N
(

0,
1

n

n∑
i=1

Σ−1/2XiX
T
i Σ−1/2

︸ ︷︷ ︸
=Σ−1/2

1

n

n∑
i=1

XiX
T
i︸ ︷︷ ︸

=Σ

Σ−1/2

)
= N(0, Id×d).

168



8 Solutions of the exercises

(i) It holds that E[‖W‖2
2] =

∑d
j=1 E[W 2

j ] = d. Markov’s inequality yields

P(‖W‖2
2 − 2E‖W‖2

2 ≥ t) = P(‖W‖2
2 ≥ 2d+ t) ≤

E[exp(
‖W‖22

4
)]

e−(2d+t)/4
.

Since the components of W are independent, we conclude that

E[exp(
‖W‖2

2

4
)] = E[exp(W 2

1 /4)]d =
√

2
d
.

Thus
P(‖W‖2

2 − 2E‖W‖2
2 ≥ t) ≤ (

√
2e−1/2)d · e−t/4 ≤ e−t/4.

(j) We have

P(Zγ > aγ)
(e)

≤ P(
2

n
‖eTXΣ−1/2‖2 > a) = P(

σ√
n
‖W‖2 > a)

= P(‖W‖2 >
√

2d+ t) = P(‖W‖2
2 > 2d+ t) ≤ e−t/4.

(k) a was already chosen. Additionally, we chose γ = 4a. We therefore obtain the
convergence rate γa = 4a2 = 4σ

2

n
(2d+ t).

Solution 8 (Solution of Task 8). (a) We have

E
[

max
j=1,...,d

∣∣∣ n∑
i=1

εiXij

∣∣∣] = E
[

max
j=1,...,d

∣∣∣ 1
√
nΣ

1/2
jj

n∑
i=1

εiXij

∣∣∣] · √n max
j=1,...,d

Σ
1/2
jj

= E[ max
j=1,...,d

|Wj|] ·
√
n max
j=1,...,d

Σ
1/2
jj .

Conditionally on εi, i = 1, ..., n, it holds that

Wj ∼ N
(

0,
1

nΣjj

n∑
i=1

ε2
iΣjj

)
εi∈{−1,1}

= N(0, 1).

(b) We have

ψ
(
E[ max

j=1,...,d
|Wj|]

)
≤ E[ψ( max

j=1,...,d
|Wj|)]

ψ nondecreas.

≤ E[ max
j=1,...,d

ψ(|Wj|)] ≤
d∑
j=1

Eψ(|Wj|).

(c) We have
Eψ(|Wj|) = E[exp(W 2

j /4)] =
√

2.

⇒ ψ
(
E[maxj=1,...,d |Wj|]

)
≤
√

2d

⇒ E[maxj=1,...,d |Wj|] ≤ ψ−1(
√

2d) = 2
√

log(
√

2d).
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Solution 9 (Solution of Task 9). (a) We have

FX(x) = P(X ≤ x) = P(X ≤ x, Y = 1) + P(X ≤ x, Y = −1)

= P(X ≤ x|Y = 1)π1 + P(X ≤ x|Y = −1)(1− π1)

=

∫ x

−∞
g1(x)dx · π1 +

∫ x

−∞
g−1(x)dx · (1− π1).

⇒ g(x) = g1(x)π1 + g−1(x)(1− π1).

(b) Bayes’ theorem yields (here, gX,Y denotes the common density ofX, Y , and gX|Y=1 =
g1 denotes the conditional density of X given Y = 1)

η(x) = P(Y = 1|X = x) =
gX,Y (x, 1)

g(x)
=
gX|Y=1(x)π1

g(x)
=
g1(x)π1

g(x)
.

(a) ⇒ 1− η(x) = g−1(x)(1−π1)
g(x)

.
⇒

log
( η(x)

1− η(x)

)
= log

( g1(x)π1

g−1(x)(1− π1)

)
= log

( π1

1− π1

)
+ log

( g1(x)

g−1(x)

)
.

(c) We have

log
( g1(x)

g−1(x)

)
= log

( det(Σ−1)1/2 exp
(
− 1

2
(x− µ1)TΣ−1

1 (x− µ1)
)

det(Σ1)1/2 exp
(
− 1

2
(x− µ−1)TΣ−1

2 (x− µ−1)
))

=
1

2
log
(det(Σ−1)

det(Σ1)

)
− 1

2
(x− µ1)TΣ−1

1 (x− µ1) +
1

2
(x− µ−1)TΣ−1

−1(x− µ−1).

(d) (b),(c) ⇒

log
( η(x)

1− η(x)

)
= log

( g1(x)

g−1(x)

)
= −1

2
(x− µ1)TΣ−1(x− µ1) +

1

2
(x− µ−1)TΣ−1(x− µ−1)

= µT1 Σ−1x− 1

2
µT1 Σ−1µ1 − µT−1Σ−1x+

1

2
µT−1Σ−1µ−1

= (µ1 − µ−1)TΣ−1︸ ︷︷ ︸
=:(β∗)T

x. (∗)

The mappings δ1(x) := log
(

η(x)
1−η(x)

)
and δ−1(x) := 0 form optimal discriminant

functions since

δ1(x) > δ−1(x) ⇐⇒ η(x) >
1

2
⇐⇒ f ∗(x) = 1.

Therefore, the model has optimal linear decision boundaries. Due to (*), the model
assumption of logistic regression is fulfilled with β∗ := Σ−1(µ1 − µ−1).
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(e) µ−1 = −µ1.

(f) We rearrange terms as in (d) to obtain

log
( η(x)

1− η(x)

)
= log

( π1

1− π1

)
+ log

( g1(x)

g−1(x)

)
= −1

2
(x− µ1)TΣ−1(x− µ1) +

1

2
(x− µ−1)TΣ−1(x− µ−1)

= log
( π1

1− π1

)
+ µT1 Σ−1x− 1

2
µT1 Σ−1µ1 − µT−1Σ−1x+

1

2
µT−1Σ−1µ−1

=
[

log
( π1

1− π1

)
+

1

2
µT−1Σ−1µ−1 −

1

2
µT1 Σ−1µ1

]
︸ ︷︷ ︸

=:β0

+ (µ1 − µ−1)TΣ−1︸ ︷︷ ︸
=:(β∗)T

x. (∗)

We conclude that the model has affine linear decision boundaries.
With h(x) = (1, x), we have

log
( η(x)

1− η(x)

)
= (β0, β

∗)Th(x),

that is, the model assumption of logistic regression holds for (X̃, Y ) with X̃ =
h(X) = (1, X).

(g) It holds that

log
( η(x)

1− η(x)

)
= log

( π1

1− π1

)
+

1

2
log
(det(Σ−1)

det(Σ1)

)
−1

2
(x− µ1)TΣ−1

1 (x− µ1) +
1

2
(x− µ−1)TΣ−1

−1(x− µ−1)

=
[

log
( π1

1− π1

)
+

1

2
log
(det(Σ−1)

det(Σ1)

)
+

1

2
µT−1Σ−1µ−1 −

1

2
µT1 Σ−1µ1

]
︸ ︷︷ ︸

=:β0

+
1

2
xT (Σ−1

−1 − Σ−1
1 )︸ ︷︷ ︸

=:2A

x+ (µT1 Σ−1
1 − µ−1Σ−1

−1)︸ ︷︷ ︸
=:aT

x

= β0 + aTx+ xTAx

= β0h(x)1 +
d∑
j=1

ajh(x)1+j +
d∑

j,k=1

Ajkh(x)1+d+d(j−1)+k

with h(x) = (1, x1, ..., xd, x
2
1, ..., x1xd, x2x1, ..., x2xd, ..., xdx1, ..., x

2
d).

(h) We obtain the following rates: In (d), d
n
, in (f), d+1

n
, in (g): 1+d+d2

n
.

Solution 10 (Solution of Task 10). (a) This statement holds in general, even without
the model assumption of logistic regression. We have

δ∗(x) = log
( η(x)

1− η(x)

)
> 0 ⇐⇒ η(x) >

1

2
⇐⇒ f ∗(x) = 1.
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Thus, f ∗(x) = sign(δ∗(x)).
Here, we have (cf. Task 9(f)(*)):

δ∗(x) =
[

log
( π1

1− π1

)
+

1

2
µT−1Σ−1µ−1 −

1

2
µT1 Σ−1µ1

]
+ (µ1 − µ−1)TΣ−1x.

(b) The law of total probability yields

R(f ∗) = P(Y 6= f ∗(X)) = P(f ∗(X) = −1|Y = 1)π1 + P(f ∗(X) = 1|Y = −1)(1− π1)

= P(δ∗(X) < 0|Y = 1)π1 + P(δ∗(X) > 0|Y = −1)(1− π1).

(c) Conditionally on Y = 1, we have X ∼ N(µ1,Σ), thus

δ∗(X) = T +
1

2
µT−1Σ−1µ−1 −

1

2
µT1 Σ−1µ1 + (µ1 − µ−1)TΣ−1X

∼ N
(
T +

1

2
µT−1Σ−1µ−1 −

1

2
µT1 Σ−1µ1 + (µ1 − µ−1)TΣ−1µ1︸ ︷︷ ︸

= 1
2
µT−1Σ−1µ−1+ 1

2
µT1 Σ−1µ1−µT−1Σ−1µ1=∆/2

, (µ1 − µ−1)TΣ−1(µ1 − µ−1)
)

= N(T +
∆

2
,∆).

Similarly, conditionally on Y = −1 we have X ∼ N(µ−1,Σ), which yields

δ∗(X) ∼ N
(
T +

1

2
µT−1Σ−1µ−1 −

1

2
µT1 Σ−1µ1 + (µ1 − µ−1)TΣ−1µ−1︸ ︷︷ ︸

=− 1
2
µT−1Σ−1µ−1− 1

2
µT1 Σ−1µ1+µT−1Σ−1µ1=−∆/2

, (µ1 − µ−1)TΣ−1(µ1 − µ−1)
)

= N(T − ∆

2
,∆).

(d) For Z ∼ N(a, b) it holds that P(Z < 0) = P(Z−a√
b
< − a√

b
) = Φ(− a√

b
) und P(Z >

0) = 1− P(Z ≤ 0) = 1− Φ(− a√
b
).

(b),(c) ⇒

R(f ∗) = P(δ∗(X) < 0|Y = 1)π1 + P(δ∗(X) > 0|Y = −1)(1− π1)

= Φ
(−T − ∆

2√
∆

)
π1 +

(
1− Φ

(−T + ∆
2√

∆

))
(1− π1).

(e) π1 = 1
2
⇒ T = 0.

Σ = Id×d, µ−1 = −µ1 ⇒ ∆ = (µ1 − µ−1)TΣ−1(µ1 − µ−1) = 2µT1 (2µ1) = 4‖µ1‖2
2.

Plugging in the result from (d) and using 1− Φ(x) = Φ(−x), we have

R(f ∗) =
1

2
Φ
(
− 2‖µ1‖2

2

2‖µ1‖2

)
+

1

2

(
1− Φ

(2‖µ1‖2
2

2‖µ1‖2

))
= Φ(−‖µ1‖2).
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8 Solutions of the exercises

Graphically this means that the more µ1, µ−1 = −µ1 are apart from each other,
the smaller is R(f ∗). For µ1 = 0, the maximum is attained at R(f ∗) = 1

2
. This

corresponds to a random guess of the class since in this case, the distributions
X|Y = 1 and X|Y = −1 are equal.

8.3 Solutions of Chapter 4

Solution 11 (Solution of Task 11). (a) Due to y ∈ {+1,−1}, we have

L̃(y, s) = (y − s)2 = y2 − 2ys+ s2 = 1− 2ys+ (ys)2 = (1− ys)2 = φ(−ys)

with φ(x) = (1 + x)2.

(b) We have Φη(z) = φ(−z)η + φ(z)(1− η) = (1− z)2η + (1 + z)2(1− η).
We now search for a minimizer of z 7→ Φη(z) via

0 = Φ′η(z) = −2(1− z)η + 2(1 + z)(1− η) = 2 + 2z − 4η ⇒ z = 2η − 1.

Theorem 3.19 ⇒ δ∗(x) = 2η(x)− 1 with η(x) = P(Y = 1|X = x).

(c) It holds that δ∗(x) > 0 ⇐⇒ η(x) > 1
2
⇐⇒ f ∗(x) = arg maxk∈{+1,−1} P(Y = k|X =

x) = 1.
⇒ f ∗(x) = sign(δ∗(x))
⇒ The calibration condition is satisfied.

(d) δ∗ ∈ ∆ is equivalent to ∀x ∈ X : 2η(x)− 1 = δ∗(x) = xTβ∗ for some β∗ ∈ Rd, that
is, we have to satisfy

η(x) =
1

2
+

1

2
xTβ∗.

Note that the left hand side is in ∈ [0, 1]. Therefore this can only be fulfilled if X
is bounded.

(e) We have already seen in (b) that g(η) = arg minz∈R Φη(z) = 2η − 1.
Moreover,

H(η) = Φη(g(η)) = (2− 2η)2η + (2η)2(1− η) = 4η(1− η).

We conclude that

1−H(η) = 1− 4η + 4η2 = 4(η − 1

2
)2 ⇒ (

1

2
)2(1−H(η)) = (η − 1

2
)2.

Furthermore, φ(0) = 1 and φ is convex. Theorem 3.21 ⇒ With s = 2, CH = 1
2
,

the risk transfer formula is satisfied with

G(r) = 2CHr
1/s = r1/2.
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(f) For q ∈ [0,∞), we have G(r) = 4C
s(q+1)
q+s

H C−
1
q+s r

q+1
q+s = 4(1

2
)

2(q+1)
q+2 C−

1
q+2 r

q+1
q+2 .

For q =∞, we have G(r) = 2
CsH
cs−1 r = 1

2c
· r.

(g) Due to 1
2
XTβ∗ ∼ N(1

2
µTβ∗, 1

4
‖β∗‖2

2) = N(0, 1), it holds that

P(|η(X)− 1

2
| ≤ t) = P(

1

2
|XTβ∗| ≤ t)

Z∼N(0,1)
= P(|Z| ≤ t) = 2Φ(t)− 1

Hinweis

≤ 2Φ′(0)t =

√
2

π
· t.

Here, Φ(x) =
∫ x
−∞

1√
2π

exp(−y2/2)dy is the distribution function of the standard

normal distribution and Φ′(x) = 1√
2π

exp(−x2/2).
Therefore, the noise condition

P(|η(X)− 1

2
| ≤ t) ≤ Ctq ∀t > 0

is satisfied with C =
√

2
π
, q = 1.

Solution 12 (Solution of Task 12). Für φ(x) = ex:

(a) φ′(x) = ex > 0 ⇒ φ nondecreasing,
φ′′(x) > 0 ⇒ φ convex,
φ(0) = e0 = 1.

(b) We have Φη(z) = φ(−z)η + φ(z)(1 − η) = e−zη + ez(1 − η). A minimizer of
z 7→ Φη(z) is found via

0 = Φ′η(z) = −e−zη + ez(1− η) ⇒ z =
1

2
log(

η

1− η
).

Theorem 3.19 ⇒ δ∗(x) = 1
2

log( η(x)
1−η(x)

) with η(x) = P(Y = 1|X = x).

(c) It holds that δ∗(x) = 1
2

log( η(x)
1−η(x)

) > 0 ⇐⇒ η(x)
1−η(x)

> 1 ⇐⇒ η(x) > 1
2
⇐⇒ f ∗(x) =

arg maxk∈{+1,−1} P(Y = k|X = x) = 1.
⇒ f ∗(x) = sign(δ∗(x))
⇒ The calibration condition is satisfied.

(d) We have already seen in (b) that g(η) = arg minz∈R Φη(z) = 1
2

log( η
1−η ).

Moreover,

H(η) = Φη(g(η)) = exp
(
− 1

2
log(

η

1− η
)
)
η + exp

(1

2
log(

η

1− η
)
)

(1− η)

=
( η

1− η

)−1/2

η +
( η

1− η

)1/2

(1− η)

= 2(1− η)1/2η1/2 = 2((1− η)η)1/2.
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Thus,
p(η) := 1−H(η) = 1− 2((1− η)η)1/2.

Here, it holds that p′(η) = 2(η − 1
2
) · (η(1 − η))−1/2, p′′(η) = 1

2
(η(1 − η))−3/2 ≥

1
2
(1

4
)−3/2 = 4.

A Taylor expansion at η = 1
2

yields

1−H(η) = p(η) = p(
1

2
)+(η− 1

2
)p′(

1

2
)+

1

2
(η− 1

2
)2p′′(ξ) ≥ 1

2
(η− 1

2
)2 ·4 = 2(η− 1

2
)2.

Note that φ(0) = 1 and φ is convex. Theorem 3.21 ⇒ With s = 2, CH = 1√
2
, the

risk transfer formula is satisfied with

G(r) = 2CHr
1/s =

√
2r1/2.

For φ(x) = max{1 + x, 0}, we have:

(a) 1 + x, 0 are increasing ⇒ φ(x) = max{1 + x, 0} is increasing (maximum preserves
monotonicity).
1 + x, 0 convex ⇒ φ(x) = max{1 + x, 0} convex (maximum preserves convexity).
φ(0) = max{1, 0} = 1.

(b) We have Φη(z) = φ(−z)η + φ(z)(1− η) = max{1− z, 0}η + max{1 + z, 0}(1− η).
We now search for a minimizer of z 7→ Φη(z).
For z < −1, Φη(z) = (1 − z)η is decreasing, for z > 1, Φη(z) = (1 + z)(1 − η) is
increasing. ⇒ the minimizer of Φη is located in [−1, 1].
For z ∈ [−1, 1], we have

Φη(z) = (1− z)η + (1 + z)(1− η) = 1 + 2z · (1

2
− η).

For η > 1
2

this is minimal for z = 1, for η < 1
2

this is minimal for z = −1. For
η = 1

2
, there is no unique minimizer.

⇒ z = sign(η − 1
2
) is a minimizer of Φη.

Theorem 3.19 implies that δ∗(x) = sign(η(x)− 1
2
).

(c) It holds that δ∗(x) = sign(η(x) − 1
2
) = f ∗(x), in particular we have f ∗(x) =

sign(δ∗(x))
⇒ The calibration condition is satisfied.
Note that here, δ∗(x) itself also only takes discrete values {−1,+1} !

(d) We have already seen in (b) that g(η) = sign(η − 1
2
).

Moreover, we have

H(η) = Φη(g(η)) = 1 + 2sign(η − 1

2
) · (1

2
− η) = 1− 2|η − 1

2
|.
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Thus

1−H(η) = 2|η − 1

2
|.

Additionally, we have that φ(0) = 1 and φ is convex. The conditions of Theorem
3.21 are fulfilled with s = 1, CH = 1

2
, and we obtain the risk transfer formula with

G(r) = 2CHr
1/s = r.

Solution 13 (Solution of Task 13). (a) It holds that

L(θ, p) =
1

2
‖β‖2

2 + C

n∑
i=1

ξi +
n∑
i=1

αi
(
1− ξi − Yi(XT

i β + β0)
)
−

n∑
i=1

γiξi

We now investigate the three derivatives ∇θ = (∇β,∇β0 ,∇ξ):

∇βL(θ, p) = β−
n∑
i=1

αiYiXi, ∇β0L(θ, p) =
n∑
i=1

αiYi, ∇ξiL(θ, p) = C−αi−γi.

The optimality conditions ∇θL(θ, p) = 0 now directly imply the assertion.

(b) We plug in the constraints ∇θL(θ, p) = 0 in the objective function L(θ, p) and
rearrange terms. During this procedure, we have to take care that the constraints
regarding α are still preserved. It holds that

L(θ, p) =
1

2
‖β‖2

2 + C
n∑
i=1

ξi +
n∑
i=1

αi
(
1− ξi − Yi(XT

i β + β0)
)
−

n∑
i=1

γiξi

=
1

2
‖β‖2

2 +
n∑
i=1

αi +
n∑
i=1

ξi · (C − αi − γi)︸ ︷︷ ︸
=0

−β0

n∑
i=1

αiYi︸ ︷︷ ︸
=0

−
( n∑
i=1

αiYiX
T
i︸ ︷︷ ︸

=βT

)
β

∇θL(θ,p)=0
=

1

2
‖β‖2

2 +
n∑
i=1

αi − ‖β‖2
2

=
n∑
i=1

αi −
1

2
‖β‖2

2

=
n∑
i=1

αi −
1

2

∥∥∥ n∑
i=1

αiYiXi

∥∥∥2

2

=
n∑
i=1

αi︸ ︷︷ ︸
=1Tα

−1

2

n∑
i,j=1

αiαjX
T
i XjYiYj︸ ︷︷ ︸

=αTQα

= 1
Tα− 1

2
αTQα.
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A maximizer of L(θ, p) is a minimizer of −L(θ, p). This yields the optimizing
function stated in the task.
The constraints posed on α read:

• ∇β0L(θ, p) = 0 is equivalent to YTα =
∑n

i=1 αiYi = 0.

• ∇βL(θ, p) = β−
∑n

i=1 αiYiXi = 0 is no longer relevant because β is no longer
appearing in the optimization problem.

• ∇ξiL(θ, p) = C − αi − γi = 0 yields αi = C − γi ≤ C (since γi ≥ 0). This
yields the constraint αi ≤ C.

(c) The optimality condition ∇βL(θ̂, p̂) = 0 yields β̂ =
∑n

i=1 αiYiXi.

Due to G(θ̂) ≤ 0, p̂ ≥ 0 we have

0 = G(θ̂)T p̂ =
∑
j

G(θ̂)j p̂j ⇐⇒ ∀j : G(θ̂)j p̂j = 0.

In particular, we have for all i = 1, ..., n that

γ̂iξ̂i = 0, α̂i(1− ξ̂i − Yi(XT
i β̂ + β̂0)) = 0. (∗)

Let i ∈ {1, ..., n} be some index with α̂i ∈ (0, C).
⇒ 0 = ∇β0L(θ̂, p̂) = C − α̂i − γ̂i ⇒ γ̂i = C − α̂i > 0.

(*) ⇒ ξ̂i = 0
(*), α̂i 6= 0⇒ 0 = 1− ξ̂i−Yi(XT

i β̂+ β̂0) = 1−Yi(XT
i β̂+ β̂0)⇒ 0 = Yi−Y 2

i (XT
i β̂+

β̂0) = Yi −XT
i β̂ − β̂0

⇒ β̂0 = Yi −XT
i β̂.

Solution 14 (Solution of Task 14). (a) It holds that

K2(x, x′) = (1 + xTx′)2

= (1 + x1x
′
1 + x2x

′
2)2 = 1 + x2

1(x′1)2 + x2
2(x′2)2 + 2x1x

′
1 + 2x2x

′
2 + 2x1x2x1x

′
2

= h(x)Th(x′)

with
h(x) = (1, x2

1, x
2
2,
√

2x1,
√

2x2,
√

2x1x2).

(b) With x̃ := (1, x), x̃′ := (1, x′), we have

Kp(x, x
′) = (x̃, x̃′)p =

( d+1∑
k=1

x̃kx̃
′
k

)p
=

d+1∑
i1,...,ip=1

(x̃i1 · ... · xip) · (x̃′i1 · ... · x
′
ip)

= h(x)Th(x′),
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where h(x) = (x̃i1 · ...x̃ip)i1,...,ip=1,...,d+1.
Of course, this is not an ’optimal’ representation, the above h even contains some
components twice. However this representation is enough to get an idea which
nonlinear transformations correspond to K.
Obviously, we have m ≤ |{(i1, ..., ip) : i1, ..., ip ∈ {1, ..., d+ 1}}| = (d+ 1)p.

(c) It holds that

Kγ(x, x
′) = exp(−γ(x− x′)2) = exp(−γx2 + 2γxx′ − γ(x′)2)

= e−γ(x2+(x′)2)

∞∑
k=0

(2γxx′)k

k!

=
∞∑
k=0

((2γ)k/2

(k!)1/2
xke−γx

2
)
·
((2γ)k/2

(k!)1/2
(x′)ke−γ(x′)2

)
,

that is, we can choose h(x) =
( (2γ)k/2

(k!)1/2 x
ke−γx

2)
k∈N0

.

That is, h corresponds to polynomials xk (k ∈ N0) whose oscillation for large x is
damped with some exponential factor e−γx

2
.

(d) Let H be the function h for the one-dimensional Gaussian kernel from (c). Then
it holds that

Kγ(x, x
′) = e−γ‖x−x

′‖22 =
d∏
j=1

e−γ(xj−x′j)2

=
d∏
j=1

∞∑
k=0

Hk(xk)Hk(x
′
k)

=
∞∑

k1,...,kd=0

(Hk1(xk1) · ... ·Hkd(xkd)) · (Hk1(x′k1
) · ... ·Hkd(x

′
kd

)),

that is, we can choose

h(x) = (Hk1(xk1)·...·Hkd(xkd))k1,...,kd∈N0 =
((2γ)(k1+...+kd)/2

(k!)d/2
xk1

1 ·...·x
kd
d e
−γ‖x‖22

)
k1,...,kd∈N0

.

Solution 15 (Solution of Task 15). (a) Choose a = C in the definition of γ(n).
By assumption, we have

∑
k>a γj = 0 which implies γ(n) ≤ C

n
.

(b) Hint ⇒ For all a ∈ N, it holds that

γ(n) ≤ 1√
n

{ a√
n

+ C1/2c1/2
α a(1−α)/2

}
.

Derivation of the right hand side with respect to a yields: 1√
n
−C1/2c

1/2
α

α−1
2
a−

α+1
2 .

This motivates the choice
a = d(nC)

1
α+1 e.
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We did not take into account the constants cα, α for the choice of a since they do
not have a direct influence on the rate with respect to n.
⇒

γ(n) ≤ 1√
n

{ 1√
n

+ n
1−α

2(α+1)C
1

α+1 + c1/2
α n

1−α
2(α+1)C

1
α+1

}
≤ c̃α ·

( 1

n
+ C

1
α+1n−

α
α+1

)
.

(c) We apply the same strategy as in (b): For all a ∈ N, we have

γ(n) ≤ 1√
n

{ a√
n

+ C1/2 1

(1− ρ)1/2
ρa/2

}
.

Choose a = d2 logρ((nC)−1)e. This implies

γ(n) ≤ 1√
n

{ 1√
n

+2 logρ((nC)−1)+C1/2 1

(1− ρ)1/2
(nC)−1

}
≤ cρ ·

( 1

n
+2

log(nC)

nC1/2

)
.

(d) For hk it holds that

(TKhk)(x) =

∫
K(x, x′)hk(x

′)dx′ =
∞∑
l=1

hl(x)

∫
hl(x

′)hk(x
′)dx′

orthog.
= hk(x)

∫
hk(x

′)2dx′︸ ︷︷ ︸
=:γk

,

that is, hk is an eigenfunction of TK corresponding to the eigenvalue γk =
∫
hk(x

′)2dx′.

(e) From (d) we conclude that TK has at most as much nonzero eigenvalues as h has
components.
A1(b) ⇒ h has at most (d+ 1)p components.

(a) applied with C = (d+ 1)p ⇒ γ(n) ≤ (d+1)p

n
.

Solution 16 (Solution of Task 16). For t ∈ (0, 1
2
), it holds that

E[(δ(X)− δ∗(X))2] = E[ (δ(X)− δ∗(X))2︸ ︷︷ ︸
≤A(x)·{E[L̃(Y,δ(X))−L̃(Y,δ∗(X))|X=x]}

1{|η(X)− 1
2
|>t}︸ ︷︷ ︸

≤1

]

+E[(δ(X)− δ∗(X))2︸ ︷︷ ︸
≤‖δ−δ∗‖2∞≤(ρ+1)2

1{|η(X)− 1
2
|≤t}]

≤ cρ(t){R̃(δ)− R̃(δ∗)}+ (ρ+ 1)2 · P(|η(X)− 1

2
| ≤ t)

≤ 2ρ

η1

{R̃(δ)− R̃(δ∗)}+
2

t
{R̃(δ)− R̃(δ∗)}+ C(ρ+ 1)2tq.

Choose t = {R̃(δ)− R̃(δ∗)}
1
q+1 . Then we have

E[(δ(X)− δ∗(X))2] ≤ 2ρ

η1

{R̃(δ)− R̃(δ∗)}+
(
2 + C(ρ+ 1)2

)
{R̃(δ)− R̃(δ∗)}

q
q+1

Hint 3

≤ 2{ρ (ρ+ 1)1/q︸ ︷︷ ︸
≤ρ+1

+2 + C(ρ+ 1)2}{R̃(δ)− R̃(δ∗)}
q
q+1 .
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This implies the assertion.

Solution 17 (Solution of Task 17). (a) HK is a vector space and δ0, δ̂ ∈ HK ⇒ δ̃ =
T δ̂ + (1− T )δ0 ∈ HK . Moreover,

‖δ̃‖K ≤ T‖δ̂‖K + (1− T )‖δ0‖K ≤ Tρ+ (1− T )ρ = ρ.

⇒ δ̃ ∈ B(ρ).
δ̃ − δ0 = T (δ̂ − δ0) ⇒

D(δ̃, δ0) = TD(δ̂, δ0) =
rD(δ̂, δ0)

r +D(δ̂, δ0)
≤ r.

(b) It holds that R̃n(δ̂) ≤ R̃n(δ0), thus

R̃n(δ̃) = R̃n(T δ̂ + (1− T )δ0)
s 7→L̃(y,s) convex

≤ T R̃n(δ̂)︸ ︷︷ ︸
≤R̃n(δ0)

+(1− T )R̃n(δ0) ≤ R̃n(δ0).

We conclude that

R̃(δ̃)− R̃(δ0) = {R̃n(δ̃)− R̃n(δ0)}︸ ︷︷ ︸
≤0

+ {R̃(δ̃)− R̃n(δ̃)− (R̃(δ0)− R̃n(δ0))}︸ ︷︷ ︸
(a)

≤Zr

⇒

R̃(δ̃)− R̃(δ∗) = {R̃(δ̃)− R̃(δ0)}+ {R̃(δ0)− R̃(δ∗)} ≤ {R̃(δ0)− R̃(δ∗)}+ Zr.

(c) Using the assumption, we have on A that

R̃(δ̃)− R̃(δ∗) ≤ 1

8cρ
(
r

2
)2 +

1

8cρ
(
r

2
)2 =

1

4cρ
(
r

2
)2.

The quadratic margin property implies

1

cρ
D(δ̃, δ∗)2 ≤ R̃(δ̃)− R̃(δ∗) ≤ 1

4cρ
(
r

2
)2.

Rearranging terms implies

D(δ̃, δ∗) ≤ r

4
.

(d) By the quadratic margin property, we have

1

cρ
D(δ0, δ

∗)2 ≤ R̃(δ0)− R̃(δ∗) ≤ 1

4cρ
(
r

2
)2.
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⇒ D(δ0, δ
∗) ≤ r

4
.

⇒
D(δ̃, δ0) ≤ D(δ̃, δ∗) +D(δ0, δ

∗) ≤ r

4
+
r

4
=
r

2
.

We have δ̃ − δ0 = T (δ̂ − δ0), thus

r

2
≥ D(δ̃, δ∗) = TD(δ̂, δ0) =

rD(δ̂, δ0)

r +D(δ̂, δ0)

Rearranging terms yields D(δ̂, δ0) ≤ r.
Applying the technique from (b) to δ̂ yields on A that

R̃(δ̂)− R̃(δ∗) ≤ {R̃(δ0)− R̃(δ∗)}+
1

8cρ
(
r

2
)2.

(e) We conclude that

sup
δ∈B(ρ),D(δ,δ0)≤r

{R̃(δ)− R̃n(δ)− (R̃(δ0)− R̃n(δ0))} = sup
δ∈F

fδ(Xi, Yi),

where F = {δ ∈ B(ρ) : D(δ, δ0) ≤ r} and

fδ(x, y) =
1

n

{
EL̃(Y, δ(X))− L̃(y, δ(x))− (EL̃(Y, δ0(X))− L̃(y, δ0(x)))

}
.

For δ ∈ B(ρ), we have

|L̃(y, δ(x))| ≤ 1 + |δ(x)| ≤ 1 + ‖δ‖∞ ≤ 1 + ρ.

Thus

‖fδ‖∞ ≤
4(1 + ρ)

n
,

and

Var(fδ(X, Y )) ≤ 1

n2
E[(L̃(Y, δ(X))−L̃(Y, δ0(X)))2] ≤ 1

n2
E[(δ(X)−δ0(X))2] =

D(δ, δ0)2

n2
≤ r2

n2
.

Talagrand’s inequality and α > 0 yields that with probability ≥ 1− e−t, we have

Zr ≤ (1 + α) EZr︸︷︷︸
≤φρ(r2)

+
√

2tn · r
n

+ 4(
1

α
+

1

3
)(ρ+ 1) · t

n

α=1

≤ 2φρ(r
2) +

√
2t

n
· r +

16(ρ+ 1)

3
· t
n
.
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(f) r has to satisfy

2φρ(r
2) +

√
2t

n
· r +

16(ρ+ 1)

3
· t
n
≤ 1

8cρ
(
r

2
)2,

then (e) yields P(Ac) ≤ e−t. The condition on r is satisfied if

1

24cρ
(
r

2
)2 ≥ 2φρ(r

2),
1

24cρ
(
r

2
)2 ≥

√
2t

n
· r, 1

24cρ
(
r

2
)2 ≥ 16(ρ+ 1)

3
· t
n
,

or equivalently,

r2

192cρ
≥ φρ(r

2), r ≥ 96cρ

√
2t

n
, r ≥ 16

√
cρ(ρ+ 1) ·

√
2t

n
.

The first inequality is fulfilled if (cf. the hint): r ≥ 4 · 192cργ(n)1/2.

Additionally, it has to hold that R̃(δ0)− R̃(δ∗) ≤ 1
8cρ

( r
2
)2, that is,

r ≥ 2
(
8cρ{R̃(δ0)− R̃(δ∗)}

)1/2
.

Summarizing the inequalities yields the final statement.

(g) Plugging in r from (f) in the inequality from (d) yields (here c denotes some
universal constant which we will not determine in detail).

R̃(δ̂)− R̃(δ∗) ≤ {R̃(δ0)− R̃(δ∗)}+
1

8cρ
(
r

2
)2

≤ 2{R̃(δ0)− R̃(δ∗)}+
1

8cρ
·
(

(4 · 192)2c2
ργ(n) + (96)2c2

ρ ·
2t

n
+ 162cρ(ρ+ 1) · 2t

n

)
≤ 2{R̃(δ0)− R̃(δ∗)}+ c ·

{
cργ(n) + (cρ + ρ+ 1) · t

n

}
.

The choice of δ0 yields

R̃(δ0)− R̃(δ∗) = inf
δ∈B(ρ)

{R̃(δ)− R̃(δ∗)}.

(h) We have to change the approach in (c). For ε > 0, define

A := {Zr ≤
ε

1 + ε

1

4cρ
(
r

2
)2}

and assume that R̃(δ0)− R̃(δ∗) ≤ 1
(1+ε)4cρ

( r
2
)2. Then in (d), we obtain D(δ̃, δ0) ≤ r

2

and thus D(δ̂, δ0) ≤ r. In (f) we conclude that

r ≥ max
{
..., 2

(
(1 + ε)4cρ{R̃(δ0)− R̃(δ∗)}

)1/2
}
,
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thus in (g) we obtain

R̃(δ̂)− R̃(δ∗) ≤ {R̃(δ0)− R̃(δ∗)}+
ε

(1 + ε)4cρ
(
r

2
)2

≤ {R̃(δ0)− R̃(δ∗)}+ ε{R̃(δ0)− R̃(δ∗)}+ ...

= (1 + ε) · {R̃(δ0)− R̃(δ∗)}+ ...

Of course, the residual terms in ... are larger now, because they include the larger
factor 1

ε
.

(i) For each m ∈ N, we have seen in (a)-(g) that

P
(
R̃(δ̂)− R̃(δ∗) ≥ 2{R̃(δm)− R̃(δ∗)}+ c · {cργ(n) + (cρ + ρ+ 1) · t

n︸ ︷︷ ︸
=:Bm

)
≤ e−t.

Due to R̃(δm) ↓ infδ∈B(ρ) R̃(δ), we have Bm ↑ and⋃
m∈N

Bm = B :=
{

inf
δ∈B(ρ)

R̃(δ)−R̃(δ∗) ≥ 2{R̃(δm)−R̃(δ∗)}+c·{cργ(n)+(cρ+ρ+1)· t
n

}
.

We conclude that
P(B) = lim

m→∞
P(Bm) ≤ e−t.

Solution 18 (Solution of Task 18). (a) It holds that

√
2tv

√
a+b≤

√
a+
√
b

≤
√

2tnσ + 2
√
tMEZ

2
√
ab≤αa+ b

α

≤
√

2tnσ + αEZ +
1

α
tM.

Talagrand’s inequality ⇒ With probability ≥ 1− e−t, we have

Z ≤ EZ +
√

2tv +
tM

3
≤ (1 + α)EZ +

√
2tnσ + (

1

3
+

1

α
)Mt.

(b) Compared to Bernstein’s inequality, only EZ is needed additionally. The other
terms

√
2tnσ and tM appear in both inequalities.

For fixed f , the term
∑n

i=1 f(Xi) varies around 0; this variation is explained only
through

√
2tnσ and tM .

Z = supf∈F
∑n

i=1 f(Xi) varies around EZ (of course, in general it holds that
EZ > 0); but apart from that, the variation behaves like

∑n
i=1 f(Xi) for fixed f .

The complexity of the function class F therefore enters the inequality through EZ
(not through σ2,M) and does not produce an additional variation, but a shift of
Z away from zero. Therefore, the main ingredient for quantifying the variation of
Z is to find a good upper bound for EZ.
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(c) Fsep ⊂ F ⇒ supf∈F
∑n

i=1 f(Xi) ≥ supg∈Fsep
∑n

i=1 g(Xi).
We now show ’≤’: Let ε > 0. Let f ∈ F be arbitrary. Let g ∈ Fsep with
‖f − g‖ ≤ ε. Then it holds that

n∑
i=1

f(Xi) ≤
n∑
i=1

g(Xi) +
n∑
i=1

|f(Xi)− g(Xi)|︸ ︷︷ ︸
≤C‖f−g‖≤Cε

≤
n∑
i=1

g(Xi) + nCε.

⇒

sup
f∈F

n∑
i=1

f(Xi) ≤ sup
g∈Fsep

n∑
i=1

g(Xi) + nCε.

With ε→ 0, the assertion follows (note that n,C are fixed during this proof!)

(d) We show that for δ, δ′ ∈ B(ρ), it holds that |fδ(x, y)− fδ′(x, y)| ≤ ‖δ − δ′‖K .

Note that ‖δ‖∞ ≤ ‖δ‖K ≤ ρ (cf. Lemma 4.24(ii)). Then, we have fδ = A(δ)
B(δ)

with

A(δ) := (EL̃(Y, δ(X))−EL̃(Y, δ0(X)))−(L̃(y, δ(x))−L̃(y, δ0(x))), B(δ) := n(D(δ, δ0)2+r2).

Thus

|fδ(x, y)− fδ′(x, y)| ≤ 1

B(δ)
·
∣∣A(δ)− A(δ′)|+ |A(δ′)|

B(δ) ·B(δ′)
·
∣∣B(δ)−B(δ′)

∣∣.
We have 1

B(δ)
≤ 1

nr2 , |A(δ)| ≤ 4(ρ+ 1). Moreover,

|A(δ)−A(δ′)| ≤
∣∣EL̃(Y, δ(X))−EL̃(Y, δ′(X))

∣∣+∣∣L̃(y, δ(x))−L̃(y, δ′(x))
∣∣ ≤ 2‖δ−δ′‖∞.

Since |D(δ, δ0)−D(δ′, δ0)| ≤ ‖δ − δ′‖∞, D(δ, δ0) ≤ 2ρ, we have

|B(δ)−B(δ′)| ≤
∣∣D(δ′, δ0)2 −D(δ, δ0)2

∣∣ ≤ ‖δ − δ′‖∞ · 4ρ.
We conclude that

|fδ(x, y)− fδ′(x, y)| ≤
( 2

nr2
+

4(ρ+ 1) · 4ρ
(nr2)2

)
︸ ︷︷ ︸

=:C

· ‖δ − δ′‖∞︸ ︷︷ ︸
≤‖δ−δ′‖K

.

Solution 19 (Solution of Task 19). (a) It holds that

EZ =

∫ ∞
0

P(Z ≥ x)dx =

∫ A

0

P(Z ≥ x)︸ ︷︷ ︸
≤1

dx+

∫ ∞
A

P(Z ≥ x)dx

Subst. x = y +A

≤ A+

∫ ∞
0

P(Z ≥ A+ y)dy

Subst. y = Bt
= A+B ·

∫ ∞
0

P(Z ≥ A+Bt)︸ ︷︷ ︸
≤g(t)

dt ≤ A+B ·
∫ ∞

0

g(t)dt.
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(b) Choose g(t) = e−t (thus
∫∞

0
g(t)dt = 1),

Z = R̃(δ̂)− R̃(δ∗),

A = 2 inf
δ∈B(ρ)

{R̃(δ)− R̃(δ∗)}+ c · cργ(n),

B =
c

n
· (cρ + ρ+ 1)

The assertion now follows from (a) and Task 17(g).
(The proof technique is more complicated if there is an additional penalization
term, since this penalization term also depends on t).

8.4 Solutions of Chapter 5

Solution 20 (Solution of Task 20). (a) Lemma 5.2 implies that

ER(f̂n,h)−R(f ∗) = E[(f̂n,h(X)−f ∗(X))2] = E[E[(f̂n,h(X)−f ∗(X))|X = x]] ≤ E[γ(n, h)] = γ(n, h).

(b) It holds that

|f̂n,h(x)| ≤ ‖f ∗‖∞ + sup
i=1,...,n

|εi| ⇒ |f̂n,h(x)− f ∗(x)|2 ≤ (2‖f ∗‖∞ + Cε)
2.

⇒
E[(f̂n,h(x)− f ∗(x))2

1A(x)c ] ≤ (2Cf∗ + Cε)
2P(A(x)c).

(c) We have

ĝ(x)− Eĝ(x) =
n∑
i=1

Zi

with Zi =
W (

Xi−x
h

)−EW (
Xi−x
h

)

nhd
i.i.d., |Zi| ≤ ‖W‖∞

nhd
=: M and

Var(Z1) ≤ 1

n2h2d
E[W (

X1 − x
h

)2] =
1

n2h2d

∫
W (

x1 − x
h

)g(x1)dx1

u=
x1−x
h=

1

n2hd

∫
W (u)g(x+ uh)du

≤ 1

n2hd
‖g‖∞

∫
W (u)2du ≤ CWCg

n2hd
=: V 2.

We therefore have

√
2tnV +

tM

3
=

√
2tCgCW
nhd

+
tCW
3nhd

.

Plugging in these results into Bernstein’s inequality yields the assertion.
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(d) Due to g ∈ F(L), we have

|Eĝ(x)−g(x)|
u=

x1−x
h

≤
∫
W (u)|g(x+uh)−g(x)|du ≤ L

∫
W (u)‖u‖∞du·h ≤ LCW ·h.

(e) It holds that

P(A(x)c) ≤ P(|ĝ(x)− Eĝ(x)| > cg
4

) + P(|Eĝ(x)− g(x)| > cg
4

). (∗)

(d) ⇒ If LCW · h ≤ cg
4
⇐⇒ h ≤ cg

4LCW
, the last summand in (*) is 0.

(c) ⇒ If √
2tCgCW
nhd

+
tCW
3nhd

≤ cg
4
, (∗∗)

with t = log(n), the first summand in (*) is ≤ 2n−1.
The inequality in (**) is fulfilled if

(
cg
8

)2 ≥ 2tCgCW
nhd

,
cg
8
≥ tCW

3nhd
.

Solving for h yields the condition on h presented in the task.

(f) The results from (b), (f) imply

E[(f̂(x)− f ∗(x))2
1A(x)c ] ≤ (2‖f ∗‖∞ + Cε)

2P(A(x)c) ≤ 2(2‖f ∗‖∞ + Cε)
2n−1.

(g) On A(x), we have g(x) ≥ cg. Thus ĝ(x) ≥ cg
2

. With this, we conclude that

f̂n,h − f ∗ =
m̂− ĝ · f ∗

ĝ
⇒

∣∣f̂n,h − f ∗∣∣21A(x) ≤
4

c2
g

∣∣m̂− ĝ · f ∗∣∣2.
Taking expectations yields the claim.

(h) It holds that

m̂(x)− f ∗(x)ĝ(x) =
1

n

n∑
i=1

Wh(Xi − x) · {Yi − f ∗(x)}

=
1

n

n∑
i=1

Wh(Xi − x) · εi +
1

n

n∑
i=1

Wh(Xi − x) · {f ∗(Xi)− f ∗(x)}.

⇒

E|m̂(x)− f ∗(x)ĝ(x)|2]

≤ 2E
[( 1

n

n∑
i=1

Wh(Xi − x) · εi
)2]

︸ ︷︷ ︸
= 1
n

Var(Wh(X1−x)·ε1)

+2E
[( 1

n

n∑
i=1

Wh(Xi − x) · {f ∗(Xi)− f ∗(x)}
)2]
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For the last term, we use E[Z2] = E[Z]2 + Var(Z). This yields

E
[( 1

n

n∑
i=1

Wh(Xi − x) · {f ∗(Xi)− f ∗(x)}
)2]

= E
[ 1

n

n∑
i=1

Wh(Xi − x) · {f ∗(Xi)− f ∗(x)}
]2

+ Var
( 1

n

n∑
i=1

Wh(Xi − x) · {f ∗(Xi)− f ∗(x)}
)

= E[Wh(X1 − x){f ∗(X1)− f ∗(x)}] +
1

n
Var(Wh(X1 − x) · {f ∗(X1)− f ∗(x)}).

(i) It holds that

E
[( 1

n

n∑
i=1

Wh(Xi − x)εi
)2]

=
1

n
Var(Wh(X1 − x)ε1) ≤ 1

n
E[Wh(X1 − x)2] · E[ε2

1]

=
σ2

nh2d

∫
W (

x1 − x
h

)2g(x1)dx1

=
σ2

nhd

∫
W (u)2g(x+ uh)du ≤ σ2‖g‖∞

nhd

∫
W (u)2du ≤ σ2CgCW

nhd

(j) It holds that

E[Wh(X1 − x){f ∗(X1)− f ∗(x)}] =
1

hd

∫
W (

x1 − x
h

){f ∗(x1)− f ∗(x)}g(x1)dx1

u=
x1−x
h=

∫
W (u){f ∗(x+ uh)− f ∗(x)}g(x+ uh)du.

Together with f ∗ ∈ F(L), we obtain∣∣E[Wh(X1 − x){f ∗(X1)− f ∗(x)}]
∣∣ ≤ L‖g‖∞

∫
W (u)‖u‖∞du · h ≤ LCgCWh.

Squaring both sides yields the claim.

(k) With the aforementioned results, we obtain

E[
∣∣f̂n,h − f ∗∣∣21A(x)] ≤

4

c2
g

E[
∣∣m̂− ĝ · f ∗∣∣2] ≤ 8

c2
g

{σ2CgCW
nhd

+ (LCgCW )2h2 + L2CgCW
h2

nhd

}
≤

8C2
gC

2
W

c2
g

{ σ2

nhd
+ L2h2 + L2 h

2

nhd

}
.

(l) With (f) and (k), we obtain

E[(f̂(x)− f ∗(x))2] ≤
8C2

gC
2
W

c2
g

{ σ2

nhd
+ L2h2 + L2 h

2

nhd

}
+ 2(2‖f ∗‖∞ + Cε)n

−1.
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8.5 Solutions of Chapter 6

Solution 21 (Solution of Task 21). (a) Under the given assumptions, Bernstein’s in-
equality yields

P
( n∑
i=1

Zi ≥ t
)
≤ exp

(
− t2

2nσ2 + 2Mt/3

)
Application to −

∑n
i=1 Zi yields the same inequality, thus

P
(
W (g) ≥ t

)
≤ 2 exp

(
− t2

2nσ2 + 2Mt/3

)
.

If t < 3σ2n
M

, then we have 2nσ2 ≥ 2Mt/3, thus 2nσ2 +2Mt/3 ≤ 4nσ2. We conclude
that

P
(
W (g) ≥ t

)
≤ 2 exp

(
− t2

4nσ2

)
.

If t > 3σ2n
M

, then we have 2nσ2 + 2Mt/3 ≤ 4Mt/3, thus

P
(
W (g) ≥ t

)
≤ 2 exp

(
− t2

4Mt/3

)
= 2 exp

(
− 3t

4M

)
.

(b) It holds that

Eψ1

(A1(g)

4M

)
= E

∫ A1(g)/(4M)

0

etdt =

∫ ∞
0

P(A1(g) > t4M)etdt
(a)

≤
∫ ∞

0

2e−3tetdt = 1.

(c) It holds that

ψ1(E sup
g∈G

A1(g)

4M
) ≤ Eψ1

(
sup
g∈G

A1(g)

4M

)
≤
∑
g∈G

Eψ1

(A1(g)

4M

)
≤ |G|.

(d) The inverse function ψ−1
1 (x) = log(x + 1) is increasing. Application on the result

from (c) yields the result.

(e) It holds that

Eψ2

( A2(g)

2σ
√

3n

)
= E

∫ (A2(g)/(2σ
√

3n))2

0

etdt =

∫ ∞
0

P(A2(g) > t·2σ
√

3n)etdt ≤
∫ ∞

0

2e−3tetdt = 1.

(f) As in (c),(d), we obtain that ψ2(x) = ex
2 − 1 is convex. The inverse function is

ψ−1
2 (x) =

√
log(x+ 1).
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(g) It holds that

E sup
g∈G

W (g) ≤ E sup
g∈G

A1(g) + E sup
g∈G

A2(g)

≤ 4M · E sup
g∈G

A1(g)

4M
+ 2
√

3σ
√
n · E sup

g∈G

A2(g)

2
√

3σ
√
n

≤ 2
√

3σ
√
n
√

log(|G|+ 1) + 4M · log(|G|+ 1).

Solution 22 (Solution of Task 22). (a) We have

R(fT0)−R(f ∗) = E[1{Y 6=fT0
(X)} − 1{Y 6=f∗(X)}] ≤ E[1{f∗(X) 6=fT0

(X)}]

= P(fT0(X) 6= f ∗(X)).

(b) It holds that

P(fT0(X) 6= f ∗(X))

≤ P
( ⋃
A∈C

{X ∈ A}
)

≤
∑
A∈C

P(X ∈ A) ≤ cµ
∑
A∈C

µ(A)

= cµ|C|m−d

= cµcboxm
d−1 ·m−d = cµcboxm

−1.

(c) Since each coordinate is splitted dS-times, T0 satisfies |T0| = md. Thus T0 generates
a partition with 2dS = md cubes.

(d) Since T0 ∈ TS, we have

inf
T∈TS

{
R(fT )−R(f ∗) + λ · |T |

}
≤ R(fT0)−R(f ∗) + λ · |T0| ≤ cµcboxm

−1 + λmd.

(e) If S ≥ log2(n)
d+1

, then we can choose m = 2blog2(n)/(d+1)c. Then we have 1
2
n1/(d+1) ≤

m ≤ n1/(d+1). We conclude that

cµcboxm
−1+λm−d ≤ 2cmucboxn

− 1
d+1 +c

log(2d) + t

η0n
·n

d
d+1 = (2cµcbox+

c

η0

(log(2d)+t))·n−
1
d+1 .

Solution 23 (Solution of Task 23). (a) By using the theorem stated in the task, we
have

N(ε, C, ‖ · ‖2,n,X) ≤ 13 · V(C) · (4e

ε2
)V(C)

=
(4e(13V(C))

1
2V(C)

ε

)2V(C)

∀x>0:x1/2x≤2

≤
(13 · 2 · 4e

ε

)2V(C)

2V(C)≤V
≤

(13 · 2 · 4e
ε

)V
.
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(b) To calculate mC(N) (at least a lower bound), we have to find out how many
different labelings of N points in the space can be generated with decision stumps.
Here, we can choose the location of the points as desired (due tot he max in
mC(N)).
Let x1, ..., xN ∈ [0, 1] be arbitrary but with pairwise distinct locations. Then we
have mC(x1, ..., xN) = 2N . Proof: Choose

f1j(x) = 1{x<xj} − 1{x≥xj}, f2j(x) = −1{x<xj} + 1{x≥xj}.

Then all of the 2N decision rules f1j, f2j above generate different labelings of
x1, ..., xN . Graphically this can be understood as follows: If the points are located
on a real line, we put a vertical line exactly at each point xj; on the left of this
vertical line, f1j labels class all points with class 1, on the right hand side f1j labels
everything with class -1; vice versa for f2j).
All other decision stumps do not provide different labelings.
If instead there exist indices i, j ∈ {1, ..., N} with xi = xj, then we havemC(x1, ..., xN) ≤
2N .
⇒ mC(N) = 2N .

(c) In d dimensions, the problem is more involved. For pairwise disjoint x(1), ..., x(N) ∈
[0, 1]d we choose

f1jk(x) = 1{x<x(k)
j }
−1{x≥x(k)

j }
, f2jk(x) = −1{x<x(k)

j }
+1{x≥x(k)

j }
, j = 1, ..., d, k = 1, ..., N.

This yields 2Nd different labelings. All other decision stumps do not generate
more labelings (one may use a picture to see this).
If instead there exist indices i, j ∈ {1, ..., N} with x(i) = x(j), then there exist only
less labelings.
Note that there can exist at most 2N labelings.
⇒ mC(x1, ..., xN) ≤ min{2Nd, 2N}.
The exact proof to show mC(x1, ..., xN) = min{2Nd, 2N} is mathematically more
involved and is omitted here.

(d) (c) implies

mC(x1, ..., xN) ≤ min{2Nd, 2N}
⇒ V(C) ≤ inf{N ∈ N : min{2Nd, 2N} < 2N} = inf{N ∈ N : 2Nd < 2N}.

With N = 2 log2(2d), we obtain

2N = (2d)2 = 4d2, 2Nd = 4d log2(2d).

Since d > log2(2d) for d ≥ 2, we obtain

2N > 2Nd.

⇒ V(C) ≤ N
V(C)∈N⇒ V(C) ≤ b2 log2(2d)c.
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Solution 24 (Solution of Task 24). (a) It holds that EL̃(Y, δ(X)) = E[E[φ(−Y δ(X))|X =
x]] and

E[φ(−Y δ(X))|X = x]] = φ(−δ(x))η(x) + φ(δ(x))(1− η(x)).

Pointwise minimization yields δ∗(x) ∈ arg minz∈R Φη(x)(z) with Φη(z) := φ(−z)η+
φ(z)(1− η).
φ is differentiable ⇒ z 7→ Φη(x)(z) is differentiable. Since δ∗ is a minimizer, we
have

0 = Φ′η(x)(δ
∗(x)).

We obtain that δ∗(x) = (Φ′η(x))
−1(0). Put g(η) = (Φ′η)

−1(0). Moreover, it holds
that

0 = Φ′η(g(η)) = −φ′(−g(η))η + φ′(η)(1− η) (∗).

This yields the claim.

(b) By conditioning on X, we obtain

E[(L̃(Y, δ(X))− L̃(Y, δ∗(X)))2|X = x]
δ∗(x)=g(η(x))

= η(x)
[
φ(−δ(x))− φ(−g(η(x)))

]2
+ (1− η(x))

[
φ(δ(x))− φ(g(η(x)))

]2
=: A2(η(x), δ(x))

with
A2(η, δ) := η ·

[
φ(−δ)− φ(−g(η))

]2
+ (1− η)

[
φ(δ)− φ(g(η))

]2
Similarly,

E[L̃(Y, δ(X))− L̃(Y, δ∗(X))|X = x]

= η(x)
[
φ(−δ(x))− φ(−g(η((x)))

]
+ (1− η(x))

[
φ(δ(x))− φ(g(η(x)))

]
=: A1(η(x), δ(x))

with
A1(η, δ) := η ·

[
φ(−δ)− φ(−g(η))

]
+ (1− η)

[
φ(δ)− φ(g(η))

]
.

(c) It holds that

∂ηA1(η, δ) =
[
φ(−δ)− φ(−g(η))

]
−
[
φ(δ)− φ(g(η))

]
+
[
ηφ′(−g(η))− (1− η)φ′(g(η))

]
· g′(η)

(∗)
=

[
φ(−δ)− φ(−g(η))

]
−
[
φ(δ)− φ(g(η))

]
. (94)
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(d) We have

∂ηA2(η, δ)

=
[
φ(−δ)− φ(−g(η))

]2 − [φ(δ)− φ(g(η))
]2

+2
{
ηφ′(−g(η))

[
φ(−δ)− φ(−g(η))

]
− (1− η)φ′(g(η))

[
φ(δ)− φ(g(η))

]}
g′(η)

=
{
φ(−δ)− φ(−g(η))− φ(δ) + φ(g(η))

}︸ ︷︷ ︸
=∂ηA1(η,δ)

×
{
φ(δ)− φ(g(η)) + φ(−δ)− φ(−g(η)) +

{
ηφ′(−g(η)) + (1− η)φ′(g(η))

}
g′(η)

}
.

= ∂ηA1(η, δ) · {φ(δ) + φ(−δ) +B(η)} (95)

For the third summand above, we have used a2 − b2 = (a − b)(a + b) for real
numbers a, b ∈ R. For the second summand above, we used

2ηφ′(−g(η))
[
φ(−δ)− φ(−g(η))

]
− 2(1− η)φ′(g(η))

[
φ(δ)− φ(g(η))

]
= ηφ′(−g(η))︸ ︷︷ ︸

(∗)
= (1−η)φ′(g(η))

[
φ(−δ)− φ(−g(η))

]
− (1− η)φ′(g(η))︸ ︷︷ ︸

(∗)
= ηφ′(−g(η))

[
φ(δ)− φ(g(η))

]
−(1− η)φ′(g(η))

[
φ(−δ)− φ(−g(η))

]
+ ηφ′(−g(η))

[
φ(δ)− φ(g(η))

]
=

{
ηφ′(−g(η)) + (1− η)φ′(g(η))

}
·
{
φ(−δ)− φ(−g(η))− φ(δ) + φ(g(η))

}
.

(e) It holds that

∂ηA1(η, δ)

{
≥ 0, g(η) ≥ δ

≤ 0, g(η) ≤ δ.

If g(η) ≥ δ, we conclude with (d) that

∂ηA2(η, δ) ≤ {φ(δ) + φ(−δ)︸ ︷︷ ︸
≤φ(ρ)+φ(−ρ)

+B(η)︸ ︷︷ ︸
≤Cφ

} · ∂ηA1(η, δ)︸ ︷︷ ︸
≥0

≤ {φ(ρ) + φ(−ρ) + Cφ} · ∂ηA1(η, δ).

If g(η) ≤ δ, we obtain the reverse inequality due to ∂ηA1(η, δ) ≤ 0.
By convexity of φ (and thus φ′ is increasing), we obtain

φ(−δ)− φ(−ρ)

ρ− δ
≤ φ′(−δ) ≤ φ′(δ) ≤ φ(ρ)− φ(δ)

ρ− δ

which implies φ(δ) + φ(−δ) ≤ φ(ρ) + φ(−ρ).

(f) This follows directly from

φ(−δ)− φ(−g(g−1(δ))) = 0 and φ(δ)− φ(g(g−1(δ))) = 0.

192



8 Solutions of the exercises

(g) Integration yields for g(η) ≥ δ that

A2(η, δ) =

∫ η

g−1(δ)

∂ηA2(s, δ)ds
(e)

≤ {φ(ρ) + φ(−ρ) + Cφ} ·
∫ η

g−1(δ)

∂ηA1(s, δ)ds

≤ {φ(ρ) + φ(−ρ) + Cφ}A1(η, δ).

For g(η) ≤ δ, we use A2(η, δ) =
∫ η
g−1(δ)

∂ηA2(s, δ)ds = −
∫ g−1(δ)

η
∂ηA2(s, δ)ds.

(h) Derivation of Cφ:

• Case φ(x) = ex: g(η) = 1
2

log( η
1−η )⇒ g′(η) = 1

2
( 1
η

+ 1
1−η ) = 1

2η(1−η)
. Moreover,

φ′(g(η)) = η1/2(1− η)−1/2, φ′(−g(η)) = η−1/2(1− η)1/2.

Plugging in this result yields

Cφ = 0 ∨max
η

{2(η(1− η))1/2

2η(1− η)
− η1/2(1− η)−1/2 − η−1/2(1− η)1/2

}
= 0 ∨max

η

{
η−1/2(1− η)−1/2 − η1/2(1− η)−1/2 − η−1/2(1− η)1/2

}
= 0.

• Case φ(x) = log(1 + ex): g(η) = log( η
1−η ) ⇒ g′(η) = 1

η(1−η)
. Moreover,

φ′(x) =
ex

1 + ex
, φ′(g(η)) = η, φ′(−g(η)) = 1− η.

Plugging in this result yields

Cφ = 0 ∨max
η

{2η(1− η)

η(1− η)
+ log(η(1− η))

}
= max

η

{
2 + log(η(1− η)︸ ︷︷ ︸

≤4−1

)
}

= 2− 2 log(2).

Solution 25 (Solution of Task 25). In the steps (a)-(d) we have to show that an ε̃-
Covering of the right hand side yields an ε-Covering of the left hand side. In each of
these steps we construct a covering of the left hand side from a covering of the right
hand side.

(a) Let (f̃j) be a ε-Covering of F1. Then fj(x, y) := f̃j(x, y) − L̃(y, δ0(x)) is a ε-
Covering of F . Proof:
f ∈ F can be written as f = f̃ − L̃(y, δ0(x)) with f̃ ∈ F1. Let j be such that
‖f̃ − f̃j‖2,n ≤ ε. Then it holds that

‖f − fj‖2,n = ‖f̃ − f̃j‖2,n ≤ ε.

⇒ N(ε,F , ‖ · ‖2,n) ≤ N(ε,F1, ‖ · ‖2,n).
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(b) Let (f̃j) be a ε-Covering of F2. Then fj := φ ◦ f̃j is a ε · φ′(ρ)-Covering of F1.
Proof:
For f ∈ F1 exists some f̃ ∈ F2 with f = φ ◦ f̃ . Let j be such that ‖f̃ − f̃j‖2,n ≤ ε.
Then it holds that

‖f − fj‖2,n =
( 1

n

n∑
i=1

{φ(f̃(Xi, Yi))− φ(f̃j(Xi, Yi))}2
)1/2

≤ φ′(ρ) ·
( 1

n

n∑
i=1

{f̃(Xi, Yi)− f̃j(Xi, Yi)}2
)1/2

= φ′(ρ)‖f̃ − f̃j‖2,n ≤ φ′(ρ)ε,

because φ is Lipschitz continuous on [−ρ, ρ] with constant φ′(ρ).
Rearranging terms yields N(ε,F1, ‖ · ‖2,n) ≤ N( ε

φ′(ρ)
,F2, ‖ · ‖2,n).

(c) Let (δj) be a ε-Covering of F3 with respect to ‖ · ‖2,n,X . Then fj(x, y) = yδj(x) is
a ε-Covering of F2 with respect to ‖ · ‖2,n. Proof:
For f ∈ F2 exists some δ ∈ F3 with f(x, y) = yδ(x). Let j be such that ‖δ −
δj‖2,n,X ≤ ε. Then it holds that

‖f − fj‖2,n =
( 1

n

n∑
i=1

{Yiδ(Xi)− Yiδj(Xi)}2︸ ︷︷ ︸
=Y 2

i (δ(Xi)−δj(Xi))2

)1/2 Yi∈{−1,1}
≤ ‖δ − δj‖2,n,X ≤ ε.

⇒ N(ε,F2, ‖ · ‖2,n) ≤ N(ε,F3, ‖ · ‖2,n,X).

(d) Let (f̃j) be a ε-Covering of F4. Then fj := ρ · fj is a ρε-Covering of F3. Proof:
Similarly to (b) by using the specific function φ(x) = ρ · x.

Solution 26 (Solution of Task 26). (a) u is increasing. We conclude that for all M ∈
N, 0 ≤ s0 ≤ ... ≤ sM ≤ 1,

M∑
i=1

∣∣u(si)− u(si−1)
∣∣ =

M∑
i=1

(
u(si)− u(si−1)

)
= u(sM)− u(s0) ≤ u(1)− u(0),

with equality if sM = 1, s0 = 0. It follows that |u|BV = u(1)− u(0).

(b) For z ∈ [tj, tj+1) and due to t1 ≤ t2 ≤ ... ≤ tN , it holds that

ũ(z) = u(0) +
C

N
· j.

By definition of tj,

C
j

N
< u(z)− u(0) ≤ C

j + 1

N
⇒ u(0) + C

j + 1

N
< u(z) ≤ u(0) + C

j + 1

N
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(Note that both statements do not hold if tj = tj+1).
We conclude that

|u(z)− ũ(z)| ≤ C

N
.

For each z ∈ [0, 1) there exists j ∈ {0, ..., N − 1} with z ∈ [tj, tj+1). We conclude
that

‖u− ũ‖∞ ≤
C

N
=
|u|BV
N

.

(c) Let ˜̃u be the alternative representation given in the task. For z ∈ [tj, tj+1), it holds
that

˜̃u(z) =
u(0) + u(1)

2
+

j∑
i=1

C

2N
−

N∑
i=j+1

C

2N

=
u(0) + u(1)

2
+

C

2N
(j − (N − j))

=
u(0) + u(1)

2
− C

2
+
C

N
j

= u(0) +
C

N
j = ũ(z).

(d) We use a similar construction principle for v based on ’quantiles’ qi := sup{z ∈
[0, 1] : v(z)− v(0) ≤ |v|BV

N
i}, i = 0, ..., N . We obtain that

ṽ(z) =
v(0) + v(1)

2
(1{z≥0} − 1{z<0}) +

N∑
i=1

|v|BV
2N

(1{z≥qi} − 1{z<qi}).

Define g̃ := ũ− ṽ. Then it holds that

‖g̃ − g‖∞ ≤ ‖ũ− u‖∞ + ‖ṽ − v‖∞ ≤
|u|BV
N

+
|v|BV
N

=
|g|BV
N

and

g̃(z) = ũ(z)− ṽ(z) =
[u(0) + u(1)

2
− v(0) + v(1)

2

]
︸ ︷︷ ︸

=
g(0)+g(1)

2

(1{z≥0} − 1{z<0})

+
N∑
i=1

|u|BV
2N

(1{z≥ti} − 1{z<ti})−
N∑
i=1

|v|BV
2N

(1{z≥qi} − 1{z<qi}).

Solution 27 (Solution of Task 27). (a) Task 26(e) implies that there exist increasing
functions uj, vj with hj = uj − vj and |hj|BV = |uj|BV + |vj|BV . Moreover, there
exist functions h̃j : [0, 1]→ R with

‖hj − h̃j‖∞ ≤
B

N
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and

‖h̃j‖1 ≤
|hj(0)|+ |hj(1)|

2
+

N∑
i=1

( |u|BV
2N

+
|v|
2N

)
=
|hj(0)|+ |hj(1)|+ |hj|BV

2
≤ B

2
.

(b) It holds that (be aware that we do not distinguish between the notations ‖ · ‖∞
and ‖ · ‖1 for functions starting from d dimensions or 1 dimension)

‖δ∗ − h̃‖∞ ≤
d∑
j=1

‖hj − h̃j‖∞ ≤
Bd

N

and

‖h̃‖1 ≤
d∑
j=1

‖h̃j‖1 ≤
Bd

2
.

(c) For δ∗ we choose h̃ ∈ ∆. Then it holds that

inf
δ∈∆

{
R̃(δ)− R̃(δ∗) + 2λP (‖δ‖1)

}
≤ R̃(h̃N)− R̃(δ∗) + 2λP (‖h̃N‖1).

Since ‖δ∗‖∞ ≤
∑d

j=1 ‖hj‖∞ ≤
Bd
2

and ‖h̃N‖∞ ≤ ‖h̃N − δ∗‖∞ + ‖δ∗‖∞ ≤ Bd
N

+ Bd
2

,
we have

φ(−yh̃N(x)) ≤ φ(‖h̃N‖∞) <∞, φ(−yδ∗(x)) ≤ φ(‖δ∗‖∞) <∞.

By the dominated convergence theorem, Lipschitz continuity of φ with Lipschitz
constant L and h̃N → δ∗ uniformly, we have

R̃(h̃N)− R̃(δ∗) = E
[
φ(−Y h̃N(X))− φ(−Y δ∗(X))︸ ︷︷ ︸

→0 (N→∞)

]
→ 0.

It follows that

inf
δ∈∆

{
R̃(δ)− R̃(δ∗) + 2λP (‖δ‖1)

}
≤ lim sup

N→∞

{
R̃(h̃N)− R̃(δ∗) + 2λP (‖h̃N‖1)

}
≤ 2λP (‖h̃N‖1) ≤ 2λP (

Bd

2
).

(d) We first consider λ. It holds that

V = 2b2 log2(2d)c ≤ 4 log2(2d) =
4

log(2)
log(2d) ≤ 4

log(2)
(log(2)+log(d+1)) ≤ 8

log(2)
log(d+1).

Since 1 ≤ V+2
V+1
≤ 2, we conclude that

((V+2)V 1/2)
V+2
V+1 ≤ (3V 3/2)

V+2
V+1 ≤ 9V 3 ≤ 9

( 8

log(2)

)3
log(d+1)3, n−

1
2
V+2
V+1 ≤ n−

1
2 .
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Plugging in these findings into λ yields

λ ≤ c · 9
( 8

log(2)

)3 · (1 + t) log(d+ 1)3 · n−
1
2 .

We now consider the whole penalization term: If φ(x) = ex, it holds that

P (
ρ

2
) = (ρφ′(ρ))

V
V+1φ(ρ)

1
V+1 + φ(ρ) ≤ 2(ρ+ 1)eρ.

This implies P (Bd
2

) ≤ 2(Bd+ 1)eBd.
If φ(x) = log(1 + ex), we have φ′(x) = ex

1+ex
≤ 1 and φ(x) ≤ 1 + x. Thus

P (
ρ

2
) = (ρφ′(ρ))

V
V+1φ(ρ)

1
V+1 + φ(ρ) ≤ 2(ρ+ 1).

This implies P (Bd
2

) ≤ 2(Bd + 1). Plugging in this results into (c) 2λP (Bd
2

) yields
the claim.

(e) In (b) we obtain

‖h− h̃‖∞ ≤
Bs

N
, ‖h̃‖1 ≤

Bs

2
.

Thus, only the quantities in the case distinction (d) change, d is replaced by s. We
obtain

inf
δ∈∆

{
R̃(δ)−R̃(δ∗)+2λP (‖δ‖1)

}
≤ c′(1+t) log(d+1)3·n−

1
2 ·

{
(Bs+ 1)eBs+1, φ = φ1,

(Bs+ 1), φ = φ2.

We therefore ’pay’ with the factor log(d + 1)3 that the underlying dimension d is
unknown. This term is present due to the oracle inequality. Instead, the ’real’
dimension s of the underlying true function (that is, the number of non-zero sum-
mands) now enters the rate at the ’costly’ locations (Bs + 1)eBs+1 or (Bs + 1),
respectively.

8.6 Solutions of Chapter 7

Solution 28 (Solution of Task 28). (a) One may use a simple plot program.

(b) The network has 1 + (m− 1) = m hidden layers with the layer widths given in the
sketch.
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(c) It holds that

g(
x− y + 1

2
)− g(

x+ y

2
) +

x+ y

2
− 1

4

=
1 + (x− y)

2
· 1− (x− y)

2
− x+ y

2
· (1− x+ y

2
) +

x+ y

2
− 1

4

=
1

4
(1− (x− y)2) +

1

4
(x+ y)2 − 1

4

=
1

4
((x+ y)2 − (x− y)2) =

1

4
· 4xy = xy.

Therefore, we can approximate the function x · y by using networks which approx-
imate g.

(d) The sketch contains q = dlog2(r)e steps (2q → 2q−1, ..., 21 → 20). In each step,
we have to insert multiplication networks fm ∈ F((m + 4), (2, 6, 6, ..., 6, 1)). To
connect the networks, we need one additional layer. In the first step, we need to
summarize at most r networks (therefore, multiply the hidden layer size with r).
Then we obtain a

F(q(m+ 5), (r, 6r, 6r, ..., 6r, 1))

network.
Approximation: For simplicity, let r = 2q with some q ∈ N. Then we have with
y1 = (x1, ..., xr/2), y2 = (xr/2+1, ..., xr) and since 0 ≤ fm,r/2(y1) ≤ 1 that

∣∣fm,r(x)−
r∏
j=1

xj
∣∣ =

∣∣fm(fm,r/2(y1), fm,r/2(y2))−
r/2∏
j=1

xj ·
r∏

j=r/2+1

xj
∣∣

≤
∣∣fm(fm,r/2(y1), fm,r/2(y2))− fm,r/2(y1) · fm,r/2(y2)

∣∣
+
∣∣fm,r/2(y1) · fm,r/2(y2)−

r/2∏
j=1

xj ·
r∏

j=r/2+1

xj
∣∣

≤ 2−m +
∣∣fm,r/2(y1)−

r/2∏
j=1

xj
∣∣+
∣∣fm,r/2(y2)−

r∏
j=r/2+1

xj
∣∣

Because of |fm,2(x) − x1x2| ≤ 2−m, the two recursive terms above do no longer
show up in step r/2 = 1.

By induction, we have
∣∣fm,r(x)−

∏r
j=1 xj

∣∣ ≤ 3q2−m ≤ r22−m.

(e) Using a Taylor expansion around a, we obtain that there exists ξx ∈ [0, 1] with

f(x) = Ta(x) +
∑

α∈Nr0:|α|=β

(∂αf)(a+ ξ(x− a)) · (x− a)α

α!
.
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⇒

|f(x)−Ta(x)| ≤
∑

α∈Nr0:|α|=β

|(x− a)α|
α!︸ ︷︷ ︸

≤ |x−a|
β
∞

α!

·
∣∣(∂αf)(a+ ξ(x− a))

∣∣︸ ︷︷ ︸
≤K

≤ K|x−a|β∞ ·
∑
|α|=β

1

α!︸ ︷︷ ︸
≤er

.

(f) It holds that

∑
a∈D(M)

r∏
j=1

(
1−M · |xj − aj|

)
+

=
r∏
j=1

M∑
l=0

(1−M |xj − `/M |)+ = 1,

thus

|T (x)−f(x)| ≤
∑

a∈D(M),‖a−x‖∞≤1/M

∣∣Ta(x)− f(x)
∣∣︸ ︷︷ ︸

(e)

≤KerM−β

·
r∏
j=1

(
1−M ·|xj−aj|

)
+
≤ KerM−β.

(g) In statement (f), the approximation of arbitrary continuously differentiable func-
tions is reduced to the approximation of products (or products of absolute values).
The result of (d) shows how products can be approximated with neural networks.

Solution 29 (Solution of Task 29). Lösung:

(a) For arbitrary t0 > 0, it holds that

E[W 2] =

∫ ∞
0

P(W 2 ≥ u)du =

∫ ∞
0

P(W ≥
√
u)du

t=
√
u

= 2

∫ ∞
0

tP(W ≥ t)dt

= 2

∫ t0

0

tP(W ≥ t)︸ ︷︷ ︸
≤1

dt

︸ ︷︷ ︸
≤t20

+2

∫ ∞
t0

tP(W ≥ t)dt.

(b) For each g ∈ G, it holds that

‖g̃‖∞ ≤
‖g‖∞
M
√

H
n

≤
√
n

H
,

and

E[g(Z1)2] =
E[g(Z1)2]

E[g(Z1)2]
≤ 1.
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Using Bernstein’s inequality, we have

P
(∣∣ n∑

i=1

{g̃(Zi)− Eg̃(Zi)}
∣∣ ≥ t

)
≤ 2 exp

(
− t2

2n+ 2
3

√
n
H
· t

)
t≥3
√
nH

≤ 2 exp
(
− t2

4
3

√
n
H
· t

)
= 2 exp

(
− 3t

4
√

n
H

)
.

We conclude that

P(W ≥ t) ≤ |G|P
(∣∣ n∑

i=1

{g̃(Zi)− Eg̃(Zi)}
∣∣ ≥ t

)
≤ 2|G| exp

(
− 3t

4
√

n
H

)
.

(c) Choose t0 = 3
√
nH und a = 3

4

√
H
n

.

Partial integration yields that
∫
te−atdt = −(a−2 + a−1t)e−at ⇒

∫∞
t0
te−atdt =

(a−2 + a−1t0)e−at0 . We conclude that

2 ·
∫ ∞
t0

tP(W ≥ t)dt ≤ 4(a−2 + a−1t0)|G| e−at0︸︷︷︸
=e−

9
4H≤|G|−1

≤ 4
{

(
4

3
)2 n

H
+ 4n

}
|G|≥2

≤ 24n.

Together with t20 = 9nH the claim now follows from (a).

Solution 30 (Solution of Task 30). (a) Z1, ..., Zn ∼ N(0, v2) i.i.d. ⇒

Wj =
1

v
√
n

∑n
i=1 aijZi(

1
n

∑n
i=1 a

2
ij

)1/2
∼ N(0, 1).

(b) For Wj ∼ N(0, 1), it holds that E exp(
W 2
j

4
) =
√

2. The function ϕ2(x) = exp(x2)−1
is convex and increasing. It follows that

ϕ2(E max
j=1,...,N

|Wj|
2

) ≤ E max
j=1,...,N

ϕ2(
|Wj|

2
) ≤

N∑
j=1

Eϕ2(
|Wj|

2
) ≤ N · (

√
2− 1) ≤ N.

⇒
E max
j=1,...,N

|Wj| ≤ 2ϕ−1
2 (N) = 2

√
log(N + 1).
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(c) With ϕ1(x) = ex − 1, we have

ϕ1(E max
j=1,...,N

|Wj|2

4
) ≤ E max

j=1,...,N
ϕ1(
|Wj|2

4
) ≤

N∑
j=1

Eϕ1(
|Wj|2

4
) ≤ N · (

√
2− 1) ≤ N.

⇒
E max
j=1,...,N

|Wj|2 ≤ 4ϕ−1
1 (N) = 4 log(N + 1).

Solution 31 (Solution of Task 31). (a) Write θ = (v1, ..., v(L),W (0), ...,W (L)) as a vec-
tor (the matrices are vectorized row by row). Then we have θ ∈ [−1, 1]T and

T =
L∑
l=1

number of entries of v(l)+
L∑
l=0

number of entries of W (l) =
L∑
l=1

pl+
L∑
l=0

plpl+1.

(b) Each fθ ∈ F(L, p, s,∞) has at most s entries of θ being non-zero, that is, F(L, p, s,∞) =
{fθ : θ ∈ Θ} with

Θ ⊂ {θ ∈ [−1, 1]T : ≤ s entries of θ non-zero}
= {θ ∈ [−1, 1]T : ∃S ⊂ {1, ..., T}, |S| ≤ s : ∀j ∈ Sc : θj = 0}
=

⋃
S⊂{1,...,T}:|S|≤s

{θ ∈ [−1, 1]T : ∀j ∈ Sc : θj = 0}︸ ︷︷ ︸
=:ΘS

.

(c) We choose a reasonable grid approximation of ΘS. Without loss of generality, let
S = {1, ..., s} (then we have ΘS ⊂ [−1, 1]s × {0}T−s). Put

Θ̃S =
{
− 1 + j · a : j = 1, ...,m

}s
× {0}T−s.

If −1 +m · a ≥ 1− a, then Θ̃S satisfies the approximation statement in the claim.
This is fulfilled with (m+ 1) · a ≥ 2, that is, m ≥ 2

a
− 1 or equivalently, m ≥ b 2

a
c.

We conclude that

|Θ̃S| ≤ ms =

⌊
2

a

⌋s
.

(d) It holds that

|Θ̃| ≤
∑

S⊂{1,...,T}:|S|≤s

|Θ̃S| ≤
s∑

k=0

∑
S⊂{1,...,T}:|S|=k

|Θ̃S|

(c)
=

s∑
k=0

#{S ⊂ {1, ..., T} : |S| = k} ·
⌊

2

a

⌋s
.
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We have

#{S ⊂ {1, ..., T} : |S| = k} =

(
T
k

)
≤ T k ≤ V k

since

T =
L∑
l=0

plpl+1 +
L∑
l=1

pl ≤
L∑
l=0

(pl + 1)pl+1 ≤
L+1∏
l=0

(pl + 1) = V.

Plugging in this result yields

|Θ̃| ≤
s∑

k=0

V k ·
(2

a

)k ≤ (2V

a

)s+1
.

(e) For γ > 0, choose a = γ
(L+1)V

. Then for each f ∈ F(L, p, s, F ), there exists some

fθ̃ with θ̃ ∈ Θ̃ such that

‖fθ − fθ̃‖∞ ≤ a · (L+ 1) · V ≤ γ.

⇒
N(γ,F(L, p, s, F ), ‖ · ‖∞) ≤

(2V

a

)s+1
=
(
2γ−1V 2(L+ 1)

)s+1
.

(f) It holds that

|Ak−θ (x)− Ak−θ (x′)| ≤ ‖W (L)‖Z · ... · ‖W (k−1)‖Z‖x− x′‖∞
‖W (l)‖∞≤1,W (l)∈Rpl×pl+1

≤
( L∏
l=k−1

pl

)
· ‖x− x′‖∞.

(g) It holds that

|Ak+
θ (x)|∞ ≤ ‖W (k)‖Z ·

{
...‖W (1)‖Z

{
‖W (0)‖Z‖x‖∞ + ‖v(1)‖∞) + ‖v(2)‖∞

}
...
}

+ ‖v(k)‖∞

≤
k−1∏
l=0

(pl + 1).
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(h) Using the convention σv(L+1)(x) := x, we have

|f(x)− fθ̃(x)| ≤
L+1∑
k=1

∣∣∣A(k+1)−
θ ◦ σv(k)W (k−1)A

(k−1)−
θ̃

(x)− A(k+1)−
θ ◦ σṽ(k)W̃ (k−1)A

(k−1)−
θ̃

(x)
∣∣∣

(f)

≤
L+1∑
k=1

( L∏
l=k

pl

)∥∥∥σv(k)W (k−1)A
(k−1)−
θ̃

(x)− σṽ(k)W̃ (k−1)A
(k−1)−
θ̃

(x)
∥∥∥
∞

≤
L+1∑
k=1

( L∏
l=k

pl

)
·
[
‖v(k) − ṽ(k)‖∞ + ‖W (k−1) − W̃ (k−1)‖Z · ‖A(k−1)

θ̃
(x)‖∞

]
(g)

≤
L+1∑
k=1

( L∏
l=k

pl

)
·
[
a+ pk−1 · a ·

k−2∏
l=0

(pl + 1)
]

≤ a · (L+ 1) ·
L∏
l=0

(pl + 1) = a · (L+ 1) · V.

(i) If f ∈ F(L, p, s, F ), then for each layer l ∈ {1, ..., L} it holds that at most s
columns of W (l) ∈ Rpl×pl+1 are nonzero. If the j-th column of W (l) is a zero vector,
we can eliminate the j-th row of W (l−1) and the j-th entry of v(l) from the model
by still representing the same function. We then obtain that

f ∈ F(L, (p0, p1, ..., pl−1, pl − 1, pl+1, ..., pL, pL+1), s, F ).

Repeating this argument, we obtain

f ∈ F(L, (p0, p1 ∧ s, ..., pL ∧ s, pL+1), s, F ).

(j) By Ṽ = (p0 + 1) · (pL+1 + 1) ·
∏L

l=1((pl ∧ s) + 1) ≤ 2L+2p0pL+1s
L, we have

H(γ) = logN(γ,F(L, p, s, F ), ‖ · ‖∞)
(i)
= logN(γ,F(L, (p0, p1 ∧ s, ..., pL ∧ s, pL+1), s, F ), ‖ · ‖∞)
(e)

≤ (s+ 1) log(2γ−1Ṽ 2(L+ 1))

= (s+ 1) log(22L+5γ−1(L+ 1)p2
0p

2
L+1s

2L)

≤ 2s ·
{

(2L+ 5) log(2) + log(γ−1) + log(2L) + 2 log(p0pL+1) + 2L log(s)
}

≤ c · s ·
{
L log(s) + log(γ−1) + log(p0pL+1)

}
where c ≥ 1 is some large enough universal constant and s ≥ 2, L ≥ 1.

203



References

References

[1] Gilles Blanchard, Olivier Bousquet, and Pascal Massart. Statistical performance of
support vector machines. Ann. Statist., 36(2):489–531, 2008.
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