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Abstract
We propose an adaptive bandwidth selector via cross validation for

local M-estimators in locally stationary processes. We prove asymp-
totic optimality of the procedure under mild conditions on the un-
derlying parameter curves. The results are applicable to a wide range
of locally stationary processes such linear and nonlinear processes.
A simulation study shows that the method works fairly well also in
misspecified situations.

1. Introduction. Inference for locally stationary time series models is
strongly connected to the estimation of parameter curves which determine
the degree of nonstationarity. The estimation of these curves was discussed
for several specific models such as tvARMA processes ([5]), the tvARCH
and tvGARCH processes ([8], [7], [4]), and time-varying random coefficient
models ([16]). Of interest is also a time-varying TAR process which was
considered in [18]

Local estimators such as kernel estimators require the selection of a band-
width. Unlike nonparametric regression, there exist only very few theoretical
results about adaptivity for locally stationary processes. We mention [14]
who discussed adaptive covariance estimation for a general class of locally
stationary processes. Other results are constructed for specific models and are
partly dependent on further tuning parameters: [9] discussed online-adaptive
forecasting of tvAR processes and [1], [2] proposed methods for sequential
and minimax-optimal bandwidth selection for tvAR processes of order 1.

In this paper we treat the problem for arbitrary locally stationary time se-
ries models determined by a time varying parameter curve. We focus on local
M-estimators and use the functional dependence measure introduced in [17]
to formulate mixing conditions. We propose an adaptive bandwidth selec-
tion procedure inspired by cross validation in the iid regression model which
does not need any tuning parameters. We discuss the theoretic behavior by
proving asymptotic optimality of the selector (similar to [12] where nonpara-
metric regression has been treated). We also prove convergence towards the

Keywords and phrases: Locally stationary processes, cross validation, adaptive band-
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deterministic asymptotic optimal bandwidth.
The technical core of the paper is martingale theory applied in particu-

lar to the score function of the objective function and several bounds for
moments of quadratic and cubic forms of locally stationary processes which
are needed to provide convergence of expansions of the estimation error with
suitable rates.

In Section 2 we introduce the locally stationary time series model and
formalize the separation of the process into a parametric stationary pro-
cess and unknown parameter curves. We define local M-estimators and the
cross validation procedure. We introduce a Kullback-Leibler type distance
measure which can be seen as an analogue to the averaged squared error in
nonparametric regression.

In Section 3 we prove asymptotic optimality of the cross validation pro-
cedure with respect to the Kullback-Leibler type distance measure and con-
vergence of the cross validation bandwidth towards the deterministic asymp-
totic optimal bandwidth. Furthermore we derive the limit distribution of the
bandwidth chosen by cross validation. The assumptions are stated in terms
of a parametric stationary time series model which is connected to the lo-
cally stationary process. This allows for easy verification since most of the
conditions are standard in M-estimation theory and were already shown for
specific stationary models.

In Section 4 we discuss some processes where the main results are appli-
cable. The performance of the method for different models such as tvAR,
tvARCH and tvMA is studied in simulations.

In Section 5 a short conclusion is drawn. Many lemmata used in the proofs
are deferred without further reference to the Supplementary Material [15],
Supplement A.

2. A cross validation method for locally stationary processes.

2.1. The Model. In this paper we discuss adaptive estimation of a multi-
dimensional parameter curve θ0 : [0, 1] → Θ ⊂ Rp, i.e. we restrict to locally
stationary processes Xt,n, t = 1, ..., n parameterized by curves. As usual we
are working in the infill asymptotic framework with rescaled time t/n ∈ [0, 1],
where n denotes the number of observations.

Following the original idea of locally stationary processes, for fixed u ∈
[0, 1], Xt,n should locally (i.e., for |u − t

n | � 1) behave like a stationary
process X̂t(u). In this paper, we assume that the time dependence of the
approximation X̂t(u) is solely described by θ0, i.e. X̂t(u) = X̃t(θ0(u)), where
X̃t(θ), θ ∈ Θ is some family of parametric stationary processes. We formu-
late the assumptions in terms of X̃t(θ) instead of X̂t(u) leading to a clear
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separation between the properties of the model class and the smoothness
assumptions on θ0. We formalize this by

Assumption 2.1 (Locally stationary time series model). Let q ≥ 1 and
‖W‖q := (E|W |q)1/q. Let Xt,n, t = 1, ..., n be a triangular array of observa-
tions. Suppose that for each θ ∈ Θ, there exists a stationary process X̃t(θ),
t ∈ Z such that for all q ≥ 1, uniformly in θ, θ′ ∈ Θ,

(1) ‖X̃t(θ)− X̃t(θ
′)‖q ≤ CA|θ − θ′|1,

n∑
t=1

∥∥Xt,n − X̃t

(
θ0

( t
n

))∥∥
q
≤ CB,

with some CA = CA(q), CB = CB(q) ≥ 0, and

Dq := max{sup
θ∈Θ
‖X̃0(θ)‖q, sup

n∈N
sup

t=1,...,n
‖Xt,n‖q} <∞.

Remark 2.2. (i) We conjecture that the assumption on the existence
of all moments of Xt,n and X̃t(θ) can be dropped - but the calculations
would be very tedious without much additional insight. The number of
moments needed for the proofs increases if the Hoelder exponent of the
unknown parameter curve decreases.

(ii) In many models, the second condition in (1) basically means that the
unknown parameter curve θ0 has bounded variation, see also Assump-
tion 3.3.

We first give some examples which are covered by our results. These
include in particular several classical parametric time series models where
the constant parameters have been replaced by time-dependent parameter
curves. Let εt, t ∈ Z be an i.i.d. sequence with mean zero.

Example 2.3. (i) the tvARMA(r, s) process: Given parameter curves
ai, bj , σ : [0, 1]→ R (i = 0, ..., r, j = 0, ..., s) with a0(·), b0(·) = 1,

r∑
i=0

ai
( t
n

)
Xt−i,n =

s∑
j=0

bj
( t
n

)
σ
( t− j
n

)
εt−j .

(ii) the tvARCH(r) process (cf. [7]): Given parameter curves ai : [0, 1]→ R
(i = 0, ..., r),

Xt,n =
(
a0

( t
n

)
+ a1

( t
n

)
X2
t−1,n + ...+ ar

( t
n

)
X2
t−r,n

)1/2
εt.
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(iii) the tvTAR(1) process (cf. [18]): Given parameter curves a1, a2 : [0, 1]→
R, define

Xt,n = a1

( t
n

)
X+
t−1,n + a2

( t
n

)
X−t−1,n + εt,

where x+ := max{x, 0} and x− := max{−x, 0}.

As an estimator of θ0(·) we consider local likelihood (or local M-) estima-
tors weighted by kernels, that is

(2) θ̂h(u) := argminθ∈Θ Ln,h(u, θ).

where

(3) Ln,h(u, θ) :=
1

n

n∑
t=1

Kh

( t
n
− u
)
`t,n(θ)

and `t,n(θ) := `(Xt,n, Y
c
t−1,n, θ) with Y c

t−1,n := (Xt−1,n, ..., X1,n, 0, 0, ...) con-
sisting of the observed past, where ` is a given objective function (localized
in Ln,h(u, θ) by the kernel K). K : R → R is nonnegative with

∫
K = 1,

and h ∈ (0,∞) is the bandwidth. For shortening the notation, we used
Kh(·) := 1

hK
( ·
h

)
. In practice, ` is often chosen to be the negative logarithm

of the infinite past likelihood of Xt,n given Yt−1,n := (Xs,n : s ≤ t− 1),

(4) `(x, y, θ) = − log pθ(Xt,n = x|Yt−1,n = y),

assuming that θ0(·) = θ ∈ Θ. In this paper, we allow for general objective
functions ` which have to obey some smoothness conditions (see Assumption
3.3).

2.2. Distance measures. Define Ỹt(θ) := (X̃s(θ) : s ≤ t). In the following,
we will use ∇ to denote the derivative with respect to θ ∈ Θ, and x′ denotes
the transpose of a vector or matrix x. As global distance measures we use the
(infeasible) averaged and the integrated squared error (ASE/ISE) weighted
by the Fisher information

(5) I(θ) := E
[
∇`(Ỹ0(a), θ) · ∇`(Ỹ0(a), θ)′

]∣∣
a=θ

.

and the possibly misspecified Fisher information V (θ) := E∇2`(Ỹ0(a), θ)
∣∣
a=θ

of the corresponding stationary approximation. In addition the weight func-
tion w(·) := 1[γ,1−γ](·) with some γ > 0 is needed to exclude boundary
effects. Since the proof is the same for other weights w(·) we allow in As-
sumption 3.4 for more general weights.
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More precisely we set (with |x|2A := x′Ax for x ∈ Rp and A ∈ Rp×p)

(6) dA(θ̂h, θ0) :=
1

n

n∑
t=1

∣∣∣θ̂h( t
n

)
− θ0

( t
n

)∣∣∣2
V (θ0(t/n))

w
( t
n

)
and

(7) dI(θ̂h, θ0) :=

∫ 1

0

∣∣θ̂h(u)− θ0(u)
∣∣2
V (θ0(u))

w(u) du.

It can be shown that for w ≡ 1, 2dA and 2dI are approximations of the
global Kullback-Leibler divergence between models with parameter curves
θ̂h(·) and θ0(·) which can be seen as follows: If ` is the correct likelihood
(4) and we assume that all observations including the negative indices are
available, we obtain with a Taylor expansion:

1

n

n∑
t=1

Eθ0 log
(dPXt,n|Yt−1,n,θ0

dPXt,n|Yt−1,n,θ1

)
≈ 1

n

n∑
t=1

Eθ0
[
`
(
Xt,n, Yt−1,n, θ1

( t
n

))− `
(
Xt,n, Yt−1,n, θ0

( t
n

))]

≈ 1

n

n∑
t=1

Eθ0∇`
(
Xt,n, Yt−1,n, θ0

( t
n

))
·
(
θ1(

t

n
)− θ0(

t

n
)
)

+
1

2n

n∑
t=1

Eθ0
∣∣∣θ1

( t
n

)
− θ0

( t
n

)∣∣∣2
∇2`(Xt,n,Yt−1,n,θ0( t

n
))
.(8)

The first approximation holds since the evolution from Yt−1,n to Xt,n is
mainly affected by θ0 through θ0( tn), see (1). Since ` is the correct likelihood,
it holds that Eθ0∇`(Xt,n, Yt−1,n, θ0( tn)) ≈ 0 which shows that only the second
summand in (8) remains, which is approximately dA(θ1, θ0) and thus justifies
the definition of dA.

To use our approach it is necessary that this property is still maintained
even if ` is not the correct likelihood, see Assumption 3.3(2). This is fulfilled
for many time series models, cf. Section 4.

To give a feeling of the arising quantities, we discuss them for the simple
example of the tvAR(1) process.

Example 2.4 (tvAR(1) process). Let Xt,n = θ0( tn)Xt−1,n+εt with i.i.d.
εt, where Eεt = 0, Eε2

t = 1 and θ0 : [0, 1] → (−1, 1). With `(x, y, θ) :=
1
2(x− θy1)2 + const chosen as the negative log Gaussian likelihood, we obtain

θ̂h(u) =
ĉ1,h(u)

ĉ0,h(u)
, ĉj,h(u) :=

1

n

n∑
t=1

Kh

( t
n
− u
)
Xt−j,nXt−1,n,
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and V (θ) = (1− θ2)−1 which leads to

dA(θ̂h, θ0) =
1

n

n∑
t=1

(
1− θ0

( t
n

)2)−1 ·
(
θ̂h
( t
n

)
− θ0

( t
n

))2
w(

t

n
).

Unlike the direct ASE 1
n

∑n
t=1

(
θ̂h
(
t
n

)
− θ0

(
t
n

))2, the Kullback-Leibler-type
distance dA(θ̂h, θ0) takes care of the fact that θ0 has to be well-estimated if it
attains values near 1 to guarantee that the model described by θ̂h is near to
the model described by θ0.

In Theorem 3.8 below we will prove that under suitable conditions, dA(θ̂h, θ0)
can be approximated uniformly in h by a deterministic distance measure
d∗M,2(h), which has a unique minimizer h0 = h0,n ∼ n−1/5. h0 can be seen as
the (deterministic) optimal bandwidth.

2.3. The crossvalidation method. We now choose the bandwidth h by a
generalized cross validation method. The main idea is to approximate the
infeasible distance measure dA(θ̂h, θ0) by an estimator CV (h). Motivated by
(8), we replace θ1 therein with an estimator θ̂h,−t of θ0 which guarantees
unbiasedness. We define a ’quasi-leave-one-out’ local likelihood

(9) Ln,h,−t(u, θ) :=
1

n

n∑
s=1,s 6=t

Kh

( s
n
− u
)
`s,n(θ)

and a ’quasi-leave-one-out’ estimator of θ0 by

(10) θ̂h,−t(u) := argminθ∈Θ Ln,h,−t(u, θ).

Here, ’leave-one-out’ does not mean that we ignore the t-th observation of
the process (Xs,n)s=1,...,n, but that we ignore the term which is contributed
by the likelihood `t,n at time step t. In case of a Gaussian likelihood, this
can be interpreted as leaving out the t-th projection error. Because of that,
we refer to the estimator as a quasi-leave-one-out method.

We then choose ĥ via minimizing the cross validation functional

(11) CV (h) :=
1

n

n∑
t=1

`t,n
(
θ̂h,−t

( t
n

))
w
( t
n

)
.

Note that there may not exist a unique minimizer ĥ of CV (h) due to its piece-
wise constancy. For the mathematical considerations we therefore choose
some ĥ such that

(12) CV (ĥ)− inf
h∈Hn

CV (h) ≤ 1

n
,
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where Hn is a suitable subinterval of (0, 1), see Assumption 3.4, which covers
all relevant values of h.

Let us specify the corresponding estimators in the tvAR(1) from Example
2.4 above:

Example 2.5 (tvAR(1) process ctd.). We have

θ̂h,−t(u) =
ĉ1,h,−t(u)

ĉ0,h,−t(u)
, ĉj,h,−t(u) :=

1

n

n∑
s=1,s 6=t

Kh

( s
n
− u
)
Xs−j,nXs−1,n,

and, ignoring the changes for the first summand t = 1,

CV (h) =
1

2n

n∑
t=1

(
Xt,n − θ̂h,−t

( t
n

)
Xt−1,n

)2
w(

t

n
)

= − 1

n

n∑
t=1

n∑
t=1

εtXt−1,n

(
θ̂h,−t

( t
n

)
− θ0

( t
n

)
)
w(

t

n
)

+
1

2n

n∑
t=1

X2
t−1,n

(
θ̂h,−t

( t
n

)
− θ0

( t
n

)
)2
w(

t

n
) +

1

n

n∑
t=1

ε2
tw(

t

n
).(13)

While the first equation in (13) shows how to use CV (h) in practice, the sec-
ond equation gives a glance how CV (h) is used to approximate dA(θ̂h, θ0) in
this situation: the second summand 1

n

∑n
t=1X

2
t−1,n

(
θ̂h,−t

(
t
n

)
− θ0

(
t
n)
)2
w( tn)

is a direct approximation of dA(θ̂h, θ0).

3. Main results. In this chapter we present our main results concerning
the bandwidth ĥ chosen by cross validation. Our results are twofold. By
assuming that θ0 is only Hoelder continuous and of bounded variation, we
prove in Theorem 3.6 that ĥ is asymptotically optimal with respect to dA,
that is,

lim
n→∞

dA(θ̂ĥ, θ0)

infh∈Hn dA(θ̂h, θ0)
= 1 a.s.

This result especially holds for non-symmetric one-sided kernels which is of
special interest in prediction. Recall that dA(θ̂h, θ0) can be interpreted as a
Kullback-Leibler-type distance between the two time series models associated
to θ̂h and θ0. Thus, the cross validation procedure yields an estimator θ̂ĥ of
θ0 such that the distributions of the associated time series coincide best.

In the special situation that K is a symmetric kernel and θ0 is twice con-
tinuously differentiable, we show in Theorem 3.9 that ĥ is consistent in the
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sense that ĥ/h0 → 1 a.s., where h0 is the deterministic optimal bandwidth
defined in (22). Furthermore, we derive the asymptotic distribution and the
convergence rate of ĥ, more precisely we show that n3/10(ĥ− h0) is asymp-
totically normal in Theorem 3.10.

3.1. Assumptions for asymptotic optimality of ĥ. We split the assump-
tions into three parts. Assumption 3.1 asks the stationary approximation
X̃t(θ) to fulfill some mixing conditions stated with the dependence measure
introduced in [17], which is necessary to prove asymptotic results. Assump-
tion 3.3 states conditions on the objective function `, ensuring the application
of typical maximum likelihood techniques. Assumption 3.4 collects some re-
quirements on the kernel K and the weight function w which are usually
satisfied in practice and are only dependent on the choice of the user.

It is important to note that all our assumptions are stated in terms of the
stationary approximation X̃t(θ) which are therefore easily verifiable due to
known results on stationary time series. In Section 4 it is shown that a large
class of time series models such as tvARMA or tvARCH models fulfill these
assumptions.
Mixing conditions: We use the functional dependence measure intro-

duced in [17]. Let εt, t ∈ Z be a sequence of i.i.d. random variables. For t ≥ 0
let Ft := (εt, εt−1, ...) be the shift process and F∗t := (εt, ..., ε1, ε

∗
0, ε−1, ...),

where ε∗0 is a random variable which has the same distribution as ε0 and
is independent of all εt, t ∈ Z. For a stationary process Wt = H(Ft) ∈ Lq
with deterministic H : R∞ → R define W ∗t := Ht(F∗t ) and the functional
dependence measure

(14) δWq (k) := ‖Wt −W ∗t ‖q.

Assumption 3.1 (Dependence assumption). Suppose that for each θ ∈
Θ, there exists a representation X̃t(θ) = H(θ,Ft) with some measurable
H(θ, ·) and δq(k) := supθ∈Θ δ

X̃(θ)
q (k) = O(k−(3+η)) for some η > 0.

Conditions on `: To state smoothness conditions on the objective func-
tion ` in a concise way, we introduce the class of Lipschitz-continuous func-
tions from R∞ to R where we allow the Lipschitz constant to depend on the
location at most polynomially.

Definition 3.2 (The class L(M,χ,C)). We say that a function g : R∞×
Θ→ R is in the class L(M,χ,C) if C = (C1, C2),M ≥ 1, χ = (χi)i=1,2,3,... ∈
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R∞≥0 and for all z ∈ R∞, θ ∈ Θ:
(15)

sup
z 6=z′

|g(z, θ)− g(z′, θ)|
|z − z′|χ,1(1 + |z|M−1

χ,1 + |z′|M−1
χ,1 )

≤ C1, sup
θ 6=θ′

|g(z, θ)− g(z, θ′)|
|θ − θ′|1(1 + |z|Mχ,1)

≤ C2

where |z|χ,1 :=
∑∞

i=1 χi · |zi| and
∑∞

i=1 χi <∞.

We now state the necessary conditions on `:

Assumption 3.3. Suppose that ` is three times differentiable with respect
to θ, and

(1) Θ ⊂ Rd is compact. For all u ∈ [0, 1], θ0(u) lies in the interior of Θ and
θ0 is Hoelder continuous with exponent β > 0 and has component-wise
bounded variation Bθ0.

(2) θ0(u) is the unique minimizer of L(u, θ) := E`(Ỹ0(θ0(u)), θ).
(3) the minimal eigenvalue of V (θ) := E[∇2`(Ỹ0(θ′), θ)

∣∣
θ′=θ

] is bounded
from below by some constant λ0 uniformly in θ ∈ Θ.

(4) ∇`(Ỹ0(θ′), θ)
∣∣
θ′=θ

is an uncorrelated sequence.
(5) each component of g ∈ {`,∇`,∇2,∇3`} lies in L(M,χ,C) for some

χ = (χj)j=1,2,..., where χj = O(j−(3+η)) for some η > 0.

The conditions are discussed more detailed in Remark 3.5.

Conditions on K,Hn, w: Finally, let us formalize the conditions on the
set of bandwidths Hn, the localizing kernel K appearing in the estimation
procedure and the weight function w which arises in the cross validation
functional and the distance measures.

Assumption 3.4. Suppose that

(1) For n ∈ N, Hn = [h, h], where h = hn ≥ c0n
δ−1, h = hn ≤ c1n

−δ for
some constants c0, c1 > 0, δ ∈ (0, 1).

(2) the kernelK : R→ R has compact support ⊂ [−1
2 ,

1
2 ], fulfills

∫
K(x) dx =

1 and is Lipschitz continuous with Lipschitz constant LK .
(3) the weight function w : [0, 1] → R≥0 is bounded by |w|∞, has bounded

variation Bw and compact support ⊂ [γ, 1− γ] with some γ > 0.

Remark 3.5 (Discussion of the assumptions). 1. Note that Assump-
tion 3.3(1), 3.3(2), 3.3(3) are standard conditions on the objective
function ` which ensure the validity of basic results (such as Taylor
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expansions) from maximum likelihood theory. Condition 3.3(2) also im-
plies that E∇`(Ỹ0(θ0(u)), θ0(u)) = 0 which is important to support the
interpretation of dA(θ̂h, θ0) as a Kullback-Leibler-type distance mea-
sure in (8). Furthermore, it ensures the approximation of dA(θ̂h, θ0) by
CV (h), cf. Section 3.6.

2. Assumption 3.3(4) is crucial to prove that CV (h) is an unbiased es-
timator of dA(θ̂h, θ0) which leads to the necessary rate of convergence.
In many time series models which are based on i.i.d. innovations,
∇`(Ỹ0(θ′), θ)

∣∣
θ′=θ

is a martingale difference which is even stronger, cf.
Section 4. The Lipschitz assumptions 3.3(5) are used in three ways:
They allow to replace Xt,n by its stationary approximations, they guar-
antee uniform convergence results in θ which are needed in maximum
likelihood theory, and they are used to transfer the mixing conditions of
X̃t(θ) to functions of X̃t(θ) such as `(Ỹt(θ′), θ). Let us emphasize that
we have to ask ` and its derivatives to decay with a certain rate χ in y
to deal with the truncated past which is used in our approach (3).

3. In principle, δ ∈ (0, 1) and c0 > 0 in Assumption 3.4 can be chosen
very small and c1 > 0 arbitrarily large, which ensures that all relevant
bandwidths are covered by Hn. In most practical applications one can
even choose Hn = [0,∞) without having any drawbacks. A standard
choice for the weight function is w(·) = 1[γ,1−γ](·) with some γ > 0.

3.2. Asymptotic optimality of ĥ. Let us emphasize that the following re-
sult asks θ0 to be only Hoelder continuous and of bounded variation. The
kernel is allowed to be one-sided which may be of interest in prediction set-
tings.

Theorem 3.6 (Asymptotic optimality of cross validation). Under As-
sumptions 2.1, 3.1, 3.3 and 3.4 the bandwidth ĥ chosen by cross validation
is asymptotically optimal in the sense that

lim
n→∞

d(θ̂ĥ, θ0)

infh∈Hn d(θ̂h, θ0)
= 1 a.s.,

where d is dA or dI from (6) and (7).

3.3. Assumptions for twice continuously differentiable θ0. To ensure that
usual second-order bias decompositions hold for dA, we state natural specifi-
cations of the smoothness properties of ` and the underlying process X̃t(θ).

Assumption 3.7 (Bias expansion conditions). Suppose that
10



(1) K is symmetric and θ0 is twice continuously differentiable,
(2) for all θ ∈ Θ, z ∈ R∞, z 7→ ∇`(z, θ) is twice partially differentiable

and ∂zi∂zj∇`(·, θ) ∈ L(max{M − 2, 1}, χ, ψ̃1(i)ψ̃2(j)) for all i, j ≥ 1

with absolutely summable sequences ψ̃1, ψ̃2.
(3) θ 7→ X̃t(θ) is twice continuously differentiable almost surely. It holds

that ‖ supθ∈Θ |∇X̃0(θ)|1‖M and ‖ supθ∈Θ |∇2X̃0(θ)|1‖M are finite, and

sup
θ 6=θ′

‖ |∇2X̃0(θ)−∇2X̃0(θ′)|1‖M
|θ − θ′|1

<∞.

3.4. Results on convergence rates of ĥ. We know from standard asymp-
totics that

θ̂h(u)− θ0(u) ≈ −∇2Ln,h(u, θ̄(u))−1∇Ln,h(u, θ0(u))

≈ −V (θ0(u))−1∇Ln,h(u, θ0(u)),(16)

which motivates the following approximation of dI(θ̂h, θ0):

(17) d∗I(h) :=

∫ 1

0

∣∣∇Ln,h(u, θ0(u))
∣∣2
V (θ0(u))−1w(u) du.

While dI(θ̂h, θ0) contains the implicitly defined θ̂h, the quantity d∗I(h) can
be stated explicitly which allows the explicit calculation of its expectation.
We now set (with ’M ’ for mean)

d∗M (h) := Ed∗I(h),

which can be seen as an approximation of the weighted mean integrated
squared error EdI(θ̂h, θ0) of θ̂h. If additionally to Assumptions 2.1, 3.1,
3.3, 3.4 we suppose Assumption 3.7, Proposition 1.1 implies the usual bias-
variance decomposition for d∗M :

(18) d∗M (h) =
µKV0

nh
+
h4

4
d2
KB0 + o((nh)−1) + o(h4)

uniformly in h ∈ Hn, where µK :=
∫
K(x)2 dx, dK :=

∫
K(x)x2 dx and

V0 :=

∫ 1

0
tr{V (θ0(u))−1I(θ0(u))}w(u) du > 0,(19)

B0 :=

∫ 1

0

∣∣E[∂2
u∇`(Ỹt(θ0(u)), θ)

∣∣
θ=θ0(u)

]∣∣2
V (θ0(u))−1w(u) du ≥ 0,(20)

leading to the definition of the deterministic bias-variance decomposition
d∗M,2(h) without any smaller-order terms and the resulting asymptotically
optimal bandwidth in the following two theorems.
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Theorem 3.8 (Approximation of distance measures). Let Assumptions
2.1, 3.1, 3.3, 3.4 and 3.7 hold. Define

(21) d∗M,2(h) :=
µKV0

nh
+
h4

4
d2
KB0

If the bias B0 is not degenerated, i.e. B0 > 0, then it holds that

sup
h∈Hn

∣∣∣∣∣d(θ̂h, θ0)− d∗M,2(h)

d∗M,2(h)

∣∣∣∣∣→ 0 a.s.

where d is dA or dI from (6) and (7).

Theorem 3.9 (Consistency of the cross validation bandwidth). Let As-
sumptions 2.1, 3.1, 3.3, 3.4 and 3.7 hold and assume that B0 > 0. Then the
bandwidth ĥ chosen by cross validation fulfils

ĥ

h0
→ 1 a.s.

where

(22) h0 =

(
V0µK
B0d2

K

)1/5

n−1/5.

is the unique minimizer of d∗M,2(h) from (21).

Note that Theorem 3.9 does not give any information about the conver-
gence rate of ĥ towards h0. Under some additional regularity assumptions
on the kernel K it is possible to obtain the exact asymptotic behavior.

Theorem 3.10 (Asymptotic normality of the cross validation bandwidth).
Let Assumptions 2.1, 3.1, 3.3, 3.4 and 3.7 hold. Additionally, assume that
B0 > 0, the second derivative of θ0 is Lipschitz continuous and that K
is continuously differentiable with Lipschitz continuous derivative K ′. Put
K̂(x) := −K ′(x)x and K̃(x) = K − K̂. Then it holds with C0 := nh5

0 that

(23) n3/10(ĥ− h0)
d→ N

(
0,

8

25
·
∫
fvar(u) du
V 2

0

·
∫

(K̃ −K ∗ K̃)2

µ2
K

· C3/5
0

)
,

where ∗ denotes convolution, V0 is defined in (19), µK is defined below (18),
the matrices I, V are defined in (5) and

fvar(u) := w(u)2tr{V (θ0(u))−1I(θ0(u))V (θ0(u))−1I(θ0(u))}.
12



Since h0 ∼ n−1/5 in the above situation, the relative proportion ĥ−h0
h0

has a
convergence rate of order n1/10 which is common for standard cross validation
selectors (see [11]). Note especially that our model covers the i.i.d. regresson
case which was discussed in [11]. The additional Lipschitz assumption on the
second derivative of θ0 is necessary to quantify the residual terms of d∗M (h)
in (18) more detailed.

Remark 3.11. It is seen in the examples in Section 4 that if the model
is correctly specified but higher moments of ε0 are not known, it may hold
that I(θ) = κ · I(θ) with some real number κ > 0, usually only depend-
ing on properties of the i.i.d. innovations εt. In this case, it holds that
V0 = p · κ ·

∫
w(u) du (p is the dimension of the parameter space) and∫

fvar(u) du = p · κ2 ·
∫
w(u)2 du, leading to simpler forms of V0 and the

asymptotic variance term in (23). Especially in the case that the whole model
(including the distribution of ε0) is correctly specified, it holds that κ = 1.

Remark 3.12. Theorem 3.10 can also be used to provide confidence in-
tervals for h0. Such results may be useful to adjust the cross validation chosen
bandwidth. If the simplifications from Remark 3.11 do not hold, one may es-
timate V0 and

∫
fvar(u) du by V̂0 and

∫
f̂var(u) du which are obtained by

replacing V (θ0(u)), I(θ0(u)) by V̂n,ĥ(u, θ̂ĥ(u)), În,ĥ(u, θ̂ĥ(u)), respectively,
where

V̂n,h(u, θ) :=
1

nh

n∑
t=1

Kh

( t
n
− u
)
∇2`(Y c

t,n, θ),

În,h(u, θ) :=
1

nh

n∑
t=1

Kh

( t
n
− u
)
∇`(Y c

t,n, θ) · ∇`(Y c
t,n, θ)

′.

The asymptotic theory is provided in the Supplementary Material, see Lemma
3.6 (applied to g = ∇2` or g = ∇` ·∇`′ therein). Then, an asymptotic (1−α)
confidence interval for h0 is given by

[ĥ− D̂, ĥ+ D̂],

where

D̂ :=
q1−α

2

√
8

5
·

√∫
f̂var(u) du

V̂0

·

√∫
(K̃ −K ∗ K̃)2

µK
· ĥ3/2.

and q1−α
2
denotes the (1 − α

2 )-quantile of the standard normal distribution.
Note especially that by the form of the asymptotic variance (23), the bias
term B0 does not have to be estimated separately.
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3.5. Possible generalizations. In the following, some immediate general-
izations of the cross validation approach (11), (12) are discussed.

Remark 3.13 (Local linear estimation). Let Θ̃ = [−R,R]p with some
R > 0 large enough. If the parameter curve θ0 is known to be twice contin-
uously differentiable, instead of (9), (10) and (11) one can also use a local
linear approach to estimate h0 via minimizing

CV lin(h) :=
1

n

n∑
t=1

`t,n
(
θ̃h,−t

( t
n

))
w
( t
n

)
,

where
(θ̃h,−t(u), θ̃′h,−t(u)) := argmin(θ,θ̃)∈Θ×Θ̃ L

lin
n,h,−t(u, θ, θ̃),

and

Llinn,h,−t(u, θ, θ̃) :=
1

n

n∑
s=1,s 6=t

Kh

( s
n
− u
)
`s,n
(
θ +

( s
n
− u
)
θ̃
)
.

We conjecture that similar results as given in Theorems 3.6, 3.8, 3.9 and
3.10 can be shown under the stated assumptions. The main difference is the
change of the bias term B0 to

B̃0 =

∫ 1

0
|θ′′0(u)|2V (θ0(u))−1w(u) du,

due to local linear estimation, cf. [13].

Remark 3.14 (Computational time). In general, the calculation of CV (h)
proposed in (11) asks to provide n estimators θ̂h,−t( tn) which are obtained by
nonlinear optimizations in (10). If one needs to evaluate CV (h) for m differ-
ent values of h, one has to perform O(n ·m) nonlinear optimizations which
may be computationally hard.

Note that in some special models like tvAR(r) processes, explicit estimators
are available (cf. Remark 4.2). Due to the structure of the estimators, it is
even possible to calculate all estimators θ̂h,−t(t/n), t = 1, ..., n simultaneously
via a convolution approach, which can be used to speed up computation.

For time series with length at most n = 1000 the computation of ĥ usually
only takes seconds. For larger time series we propose to use a reduced J-fold
cross validation approach as described in Remark 3.15.

Remark 3.15 (Reduced J-fold cross validation). The typical J-fold cross
validation routine (J ∈ N) from i.i.d. regression can be adapted in our model:

14



Based on the decomposition {1, ..., n} =
⋃J
j=1 Tn,j, where Tn,j := {j + J · i :

i ∈ N0} ∩ {1, ..., n}, the J-fold cross validation functional CV (J) reads

CV (J)(h) =
1

J

J∑
j=1

CV (J,j)(h),

where the ’reduced’ J-fold cross validation functional is based on the valida-
tion set Tn,j,

CV (J,j)(h) =
1

#Tn,j

∑
t∈Tn,j

`t,n
(
θ̂

(−j)
h

( t
n

))
w
( t
n

)
,

and the corresponding estimators θ̂(−j)
h (u) := argminθ∈Θ L

(−j)
n,h (u, θ) with

L
(−j)
n,h (u, θ) :=

1

(n−#Tn,j)

∑
t∈{1,...,n}\Tn,j

Kh

( t
n
− u
)
`t,n(θ)

are based on the training set {1, ..., n}\Tn,j.
Note that CV (n)(h) coincides with the original cross-validation routine

CV (h). In view of computational time, CV (J) has no advantage compared
to CV (h) since still n possibly nonlinear optimizations have to be performed
for calculating θ̂(−j)

h (t/n), t ∈ Tn,j, j = 1, ..., J .
We therefore propose to fix some j0 ∈ {1, ..., J} and choose ĥ(j0) as a

minimizer of only one ’reduced’ functional CV (J,j0)(h). Since then the ’ef-
fective’ training data has only size n · (1 − 1

J ), we expect that ĥ(j0) provides
a reasonable estimator of h0 · (1 − 1

J )−1/5. As long as J is constant in n,
we conjecture that our proofs for the properties of ĥ and CV (h) also apply
in this situation which means especially that if Assumptions 2.1,3.1, 3.3, 3.4
and 3.7 are fulfilled,

n3/10
(
ĥ(j0) − h0(1− 1

J
)−1/5

) d→ N
(

0, σ2
ĥ
· (J − 1) · (1− 1

J
)−3/5

)
,

where σ2
ĥ
is the variance of the limit distribution of ĥ given in Theorem 3.10,

(23).
Using this approach, only n

J nonlinear optimizations for calculating θ̂(−j0)
h (t/n),

t ∈ Tn,j0 have to be performed, but in turn the cross validation routine has a
higher variance. A typical choice of J is 5 or 10.

15



3.6. Proofs. Here we present the main ideas of the proofs of the theorems.
For the proof of Theorem 3.6, we only discuss the result for d = dA, the
proof for dI is similar. The main idea is to show that 2CV (h) approximates
dA(θ̂h, θ0) uniformly in h ∈ Hn, which then shows that their minima ĥ and
argminh∈Hn dA(θ̂h, θ0) converge to each other, giving the result.

Let Assumptions 2.1, 3.1, 3.3 and 3.4 hold. Recall from (18) that d∗M (h)
can be seen as a deterministic MSE of the estimation problem which has
a typical bias-variance decomposition and therefore describes the squared
rate with which θ0 is estimated by θ̂h. In the following we show that certain
quantities can be approximated by each other with a rate smaller than that
given by d∗M (h). Define

(24) dA,−(h) :=
1

n

n∑
t=1

∣∣∣θ̂h,−t( t
n

)
− θ0

( t
n

)∣∣∣2
V (θ0(t/n))

w(
t

n
),

which is the same as dA(θ̂h, θ0) but with θ̂h replaced by the corresponding
leave-one-out estimators θ̂h,−t. In a sequence of Lemmas in the Supplemen-
tary Material Supplement A (cf. Section 2, Lemmas 2.1, 2.2, 2.3 and 2.4
therein) we show that

(25) sup
h∈Hn

∣∣∣dA(θ̂h, θ0)− dA,−(h)

d∗M (h)

∣∣∣→ 0 a.s.,

which means that omitting the t-th prediction error in dA(θ̂h, θ0) is negligible
in comparison to the MSE rate d∗M (h). Furthermore, we show that

(26) sup
h∈Hn

∣∣∣dA(θ̂h, θ0)− d∗M (h)

d∗M (h)

∣∣∣→ 0 a.s.,

that is, dA(θ̂h, θ0) can be approximated by d∗M (h) with a rate which is neg-
ligible in comparison to d∗M (h). As a second auxiliary result we need

Lemma 3.16. Let Assumptions 2.1, 3.1, 3.3, 3.4 hold. Then

(27) sup
h∈Hn

∣∣∣2[CV (h)− 1
n

∑n
t=1 `t,n(θ0( tn))w( tn)]− dA,−(h)

d∗M (h)

∣∣∣→ 0 a.s.,

which contains the connection between CV (h) and dA,−(h). The proof
of Lemma 3.16 is based on a Taylor argument similar to (8): By a Taylor
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expansion, it holds that

2
[
CV (h)− 1

n

n∑
t=1

`t,n(θ0(
t

n
))w
( t
n

)]
=

2

n

n∑
t=1

∇`t,n(θ0(
t

n
))′
{
θ̂h,−t(

t

n
)− θ0(

t

n
)
}
w
( t
n

)
+

1

n

n∑
t=1

∣∣θ̂h,−t( t
n

)− θ0(
t

n
)
∣∣2
∇2`t,n(θ0(t/n))

w
( t
n

)
+

1

n

n∑
t=1

∣∣θ̂h,−t( t
n

)− θ0(
t

n
)
∣∣2
∇2`t,n(θ̃h,−t(t/n))−∇2`t,n(θ0(t/n))

w
( t
n

)
,(28)

where θ̃h,−t(t/n) is some intermediate value between θ̂h,−t(t/n) and θ0(t/n).
Using (16), the first summand in (28) can be approximated by
(29)

2CV ∗(h) = − 2

n

n∑
t=1

∇`t,n(θ0(
t

n
))′V

(
θ0

( t
n

))−1∇Ln,h,−t
( t
n
, θ0(

t

n
)
)
w(

t

n
)

which has approximately expectation 0 zero due to Assumption 3.3(4) which
mainly justifies 2CV (h) as an unbiased estimator of dA and shows that
CV ∗(h) has a smaller rate than d∗M (h). The second summand in (28) is ap-
proximately dA,−(h) due to E[∇2`t,n(θ0(t/n))] ≈ V (θ0(t/n)) and thus elim-
inated in the difference (27). Finally, the third term can be shown to be
of smaller order than d∗M (h) since it has order O((θ̂h,−t(t/n) − θ0(t/n))3).
Details for the proof of Lemma 3.16 can be found in the Supplementary
Material, Section 2 therein.

To prove the results (25), (26) and (27), we use as a main tool a gen-
eral bound for moments on quadratic and cubic forms of functions of lo-
cally stationary processes (cf. Proposition 8.1 in the Supplementary Mate-
rial Supplement A) which may be of independent interest. Note that for
instance (29) can be seen as a quadratic form in the terms ∇`t,n(θ0(t/n))
and ∇`s,n(θ0(t/n)) (the last one coming from ∇Ln,h,−t(t/n, θ0(t/n))).

With the help of these results, we can now prove Theorem 3.6:

Proof of Theorem 3.6. Using the result (25), Lemma 3.16 and (26)
(which allows to replace d∗M (h) in the denumerator), we have

(30) sup
h∈Hn

∣∣∣2[CV (h)− 1
n

∑n
t=1 `t,n(θ0( tn))w(t/n)]− dA(θ̂h, θ0)

dA(θ̂h, θ0)

∣∣∣→ 0 a.s.

17



This shows that 2CV (h) approximates dA(θ̂h, θ0) uniformly in h ∈ Hn (up
to a constant) with a rate smaller than dA(θ̂h, θ0). In the following we show
that this implies that the minimizer ĥ of CV (h) (up to a term n−1) converges
to the minimizer h′ of dA(θ̂h, θ0) (up to a term n−1) which then shows the
result.

An immediate consequence of (30) is (use x1+x2
y1+y2

≤ x1
y1

+ x2
y2

for positive
numbers x1, x2, y1, y2 > 0)

sup
h,h′∈Hn

∣∣∣∣∣dA(θ̂h, θ0)− dA(θ̂h′ , θ0)− 2(CV (h)− CV (h′))

dA(θ̂h, θ0) + dA(θ̂h′ , θ0)

∣∣∣∣∣→ 0 a.s.

Choosing h = ĥ and h′ such that

dA(θ̂h′ , θ0)− inf
h∈Hn

dA(θ̂h, θ0) ≤ n−1

yields

0 ←
dA(θ̂ĥ, θ0)− dA(θ̂h′ , θ0)− (CV (ĥ)− CV (h′))

dA(θ̂ĥ, θ0) + dA(θ̂h′ , θ0)

≥
dA(θ̂ĥ, θ0)− infh∈Hn dA(θ̂h, θ0)− (infh∈Hn CV (h)− CV (h′))

dA(θ̂ĥ, θ0) + infh∈Hn dA(θ̂h, θ0) + n−1

+
2n−1

dA(θ̂ĥ, θ0) + dA(θ̂h′ , θ0)

almost surely. By Proposition 1.1, it holds that d∗M (h) = µKV0
nh + Bh +

o((nh)−1) uniformly in h ∈ Hn, where Bh is some nonnegative bias term.
Together with (26), we conclude that suph∈Hn

n−1

dA(θh,θ0) → 0 a.s. Thus,

dA(θ̂ĥ, θ0)− infh∈Hn dA(θ̂h, θ0)

dA(θ̂ĥ, θ0) + infh∈Hn dA(θ̂h, θ0)
→ 0 a.s.,

from which
dA(θ̂ĥ, θ0)

infh∈Hn dA(θ̂h, θ0)
→ 1 a.s.

follows. The same can be done for dI .

The work done for the proof of Theorem 3.6 directly allows to prove The-
orem 3.8 and 3.9:
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Proof of Theorem 3.8. Because of B0 > 0 and (18), we have

(31) sup
h∈Hn

∣∣∣d∗M (h)− d∗M,2(h)

d∗M,2(h)

∣∣∣→ 0 a.s.

Application of (26), i.e. suph∈Hn
∣∣dA(θ̂h,θ0)−d∗M (h)

d∗M (h)

∣∣→ 0 a.s., finishes the proof.

Proof of Theorem 3.9. We start with (30) from the proof of Theorem
3.6. Using (31) from the proof of Theorem 3.8 and (26), we obtain

sup
h∈Hn

∣∣∣∣∣CV (h)− 1
n

∑n
t=1 `t,n(θ0(t/n))w(t/n)− d∗M,2(h)

d∗M,2(h)

∣∣∣∣∣→ 0 a.s.

Using the same methods as in the proof of Theorem 3.6, we have almost
surely

d∗M,2(ĥ)

d∗M,2(h0)
=

d∗M,2(ĥ)

infh∈Hn d
∗
M,2(h)

→ 1

The structure of d∗M,2(h) implies ĥ/h0 → 1 a.s.

Finally, we state the proof of Theorem 3.10, the asymptotic normality
of ĥ. Again some lemmas from the Supplementary Material Supplement A,
Section 4 are used which provide uniform convergences of arising quadratic
or cubic forms of locally stationary processes. The core result for proving
asymptotic normality is Lemma 4.8 which is based on a general central limit
theorem for quadratic forms of locally stationary processes, Theorem 7.1,
which may be of independent interest.

Proof of Theorem 3.10. If K is differentiable, then h 7→ CV (h) is
differentiable in h and ĥ can be chosen as a minimizer. ĥ is in the interior
of Hn for n large enough due to Theorem 3.9. The proof is based on the
following expansion:

0 = 2∂hCV (ĥ) = ∂hd
∗
M,2(ĥ) + ∂hD(ĥ)

= ∂2
hd
∗
M,2(h∗) · (ĥ− h0) + ∂hD(ĥ),

where D(h) := 2CV (h) − d∗M,2(h), h0 is the unique minimizer of d∗M,2(h)

defined in (22), and h∗ is some intermediate value between ĥ and h0. Thus

(32) ĥ− h0 = − ∂hD(ĥ)

∂2
hd
∗
M,2(h∗)

.
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By Theorem 3.9, we have ĥ/h0 → 1 a.s. and thus h∗/h0 → 1 a.s. The

structure of ∂2
hd
∗
M,2 implies that

∂2hd
∗
M,2(h∗)

∂2hd
∗
M,2(h0)

→ 1. We conclude that

n3/10(ĥ− h0) =
n7/10∂hD(ĥ)

n2/5∂2
hd
∗
M,2(h0)

+ o(1) a.s.,

with n2/5∂2
hd
∗
M,2(h0) = 5(µKV0)2/5(B0d

2
K)3/5. In Lemma 4.3 it is shown that

(33) sup
h∈H̃n

h1/2
∣∣∣∂hD(h)− ∂hD̃(h)

d∗M (h)

∣∣∣→ 0,

where D̃(h) := {d∗I(h) − d∗M (h)} + 2CV ∗(h) and CV ∗(h) is defined in (29)
and H̃n = [c0n

− 1
3

+δ, c1n
−δ].

Since ĥ
h0
→ 1 a.s., we have that almost surely, ĥ ∈ H̃n for n large

enough. By (31) we have d∗M (ĥ)

d∗M,2(ĥ)
→ 1 a.s. By the structure of d∗M,2 we obtain

d∗M,2(ĥ)

d∗M,2(h0) → 1. So inserting ĥ in (33) yields

n7/10|∂hD(ĥ)− ∂hD̃(ĥ)| → 0 a.s.,

that is,

(34) n3/10(ĥ− h0) =
n7/10∂hD̃(ĥ)

n2/5∂2
hd
∗
M,2(h0)

+ o(1) a.s.

By Lemmas 4.4 and 4.7 we have for each γ > 0 that

sup
h∈H̃n

n−γ · h1/2 |∂hD̃(h)|
d∗M (h)

→ 0 a.s.

Together with (34) we conclude that

(35) n3/10(ĥ− h0) = O(nγ) a.s.

By Lemmas 4.4, 4.5 and 4.6 it holds for each γ̃ > 0 that

sup
h,h′∈H̃n, |h−h

′|
h
≤n−γ̃

h1/2 |∂hD̃(h)− ∂hD̃(h′)|
d∗M (h)

→ 0 a.s.

Inserting h = h0, h′ = ĥ (which is possible due to (35) with γ = 1
10 − γ̃,

γ̃ ∈ (0, 1
10)), we obtain

n7/10(∂hD̃(h0)− ∂hD̃(ĥ))→ 0 a.s.
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Inserting this into (34) yields

n3/10(ĥ− h0) =
n7/10∂hD̃(h0)

n2/5∂2
hd
∗
M,2(h0)

+ o(1) a.s.

Lemma 4.8 in connection with Lemma 4.4 provides a central limit theorem
for the joint vector (2∂hCV

∗(h), ∂h{d∗I(h)− d∗M (h)})′, i.e.

(n2h3
0)1/2

(
2∂hCV

∗(h)
∂h{d∗I(h)− d∗M (h)}

)
d→ N

(
0, 8

∫
fvar(u) du · ΣK + 4C0d

2
K

∫
fbias(u) du ·

(
1 −1
−1 1

))
,

where ∗ denotes convolution, C0 = nh5
0 = V0µK

B0d2K
and

ΣK :=

( ∫
(K̃)2 −

∫
K̃ · (K ∗ K̃)

−
∫
K̃ · (K ∗ K̃)

∫
(K ∗ K̃)2

)
,

fbias(u) := w(u)2tr{bias(u)′V (θ0(u))−1I(θ0(u))V (θ0(u))−1bias(u)},
bias(u) = E[∂2

u∇`(Ỹt(θ0(u)), θ)
∣∣
θ=θ0(u)

].

Furthermore, n2/5∂2
hd
∗
M,2(h0) = n2/5(2µKV0

nh30
+3h2

0d
2
KB0) = 5(B0d

2
K)3/5(V0µK)2/5

and n7/10(n2h3
0)−1/2 = ( V0µK

B0d2K
)−3/10. We conclude that

n3/10(ĥ− h0)
d→ N

(
0,

8
∫
fvar(u) du ·

∫
(K̃ −K ∗ K̃)2

25(V0µK)7/5 · (B0d2
K)3/5

)
= N

(
0,

8

25

∫
fvar(u) du
V 2

0

·
∫

(K̃ −K ∗ K̃)2

µ2
K

· C3/5
0

)
.

4. Examples and Simulations.

4.1. Examples. Assumptions 2.1, 3.1, 3.3 and 3.7 are fulfilled for a large
class of locally stationary time series models. Here, we discuss how the con-
ditions transform in the case of some special linear and recursively defined
time series. The proofs of this Section can be found in the Supplementary
Material Supplement A (Section 5 therein). There one can also find a more
general statement about linear time series in Proposition 5.1.

Recall that εt, t ∈ Z is a sequence of i.i.d. real random variables. We will
use a Gaussian likelihood for ` defined in (4), but allow for a non Gaussian
distribution of εt.
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An important special case of locally stationary linear processes is given
by tvARMA processes, see also Proposition 2.4. in [5]. Since in this case, the
linear filter Aθ(λ) = σ · β(eiλ)

α(eiλ)
and the spectral density fθ(λ) = σ2

2π ·
∣∣β(eiλ)
α(eiλ)

∣∣2
have a simple form, the conditions in Proposition 5.1 are obviously fulfilled.
The likelihood (4) takes the form

(36) `(z, θ) =
1

2
log
( 2π

γθ(0)2

)
+

1

2

( ∞∑
j=0

γθ(j)zj+1

)2
,

where γθ(j) := 1
2π

∫ π
−π Aθ(λ)−1e−iλj dλ.

Example 4.1 (tvARMA(r, s) process). Assume that εt, t ∈ Z are i.i.d.
with existing moments of all order. Suppose that Eε0 = 0 and Eε2

0 = 1. Let
Assumption 3.3(1) hold. Assume that Xt,n obeys

Xt,n +

r∑
j=1

αj
( t
n

)
Xt−j,n = σ

( t
n

)
εt +

s∑
k=1

βk
( t
n

)
σ
( t− k

n

)
εt−k, t = 1, ..., n,

where θ0 = (α1, ..., αr, β1, ..., βs, σ)′ : [0, 1] → Rr+s+1. Define β(z) := 1 +∑s
k=0 βkz

k, α(z) := 1+
∑r

k=0 αkz
k, and let Θ be an arbitrary compact subset

of

{θ = (α1, ..., αr, β1, ..., βs, σ)′ ∈ Rr+s+1 : σ > 0,

α(z), β(z) have no zeros in common and
only zeros outside the unit circle}.

Then Assumptions 2.1, 3.1, 3.3 are fulfilled for ` chosen as in (36). If ad-
ditionally Assumption 3.7(1) is fulfilled, then Assumption 3.7 is fulfilled. It
holds that V (θ) = 1

4π

∫
∇ log fθ(λ) ·∇ log fθ(λ)′ dλ and I(θ) = V (θ)+κ4(ε0) ·

∇γθ(0)∇γθ(0)′

γθ(0)2
, where κ4(ε0) is the fourth cumulant of ε0.

Explicit formulas for the bias (20) are available and can be found in the
Supplementary Material Supplement A, Proposition 5.1.

Remark 4.2 (tvAR(r) processes). In the special case of tvAR(r) pro-
cesses, closed forms for the estimators based on `(z, θ) = 1

2 log(2πσ2) +
1

2σ2

(
z1 +

∑r
j=1 αjzj+1

)2 are available: α̂h(u) = −Γ̂h(u)−1γ̂h(u) and σ̂h(u)2 =
1
n

∑n
t=r+1

(
Xt,n +

∑r
j=1 α̂j(u)Xt−j,n

)2, where Y ◦t−1,n = (Xt−1,n, ..., Xt−r,n)′
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and

Γ̂h(u) :=
1

n

n∑
t=r+1

Kh

( t
n
− u
)
Y ◦t−1,n(Y ◦t−1,n)′,

γ̂h(u) :=
1

n

n∑
t=r+1

Kh

( t
n
− u
)
Xt,nY

◦
t−1,n.

We now discuss recursively defined nonlinear time series models with ad-
ditive innovations εt. Let us fix some r > 0 and define the vectors of the
last r lags Y ◦t−1,n = (Xt−1,n, ..., Xt−r,n)′, Ỹ ◦t−1(θ) = (X̃t−1(θ), ..., X̃t−r(θ))

′ as
the vector of the r past values of the locally stationary and the stationary
time series, respectively. Here, we use the superscript ◦ to clearly separate
between the infinite-dimensional vector Y c

t−1,n used in the likelihood (3) and
Y ◦t−1,n, the lags used to create the next observations of the model. Many pop-
ular locally stationary models assume that the conditional mean and / or
variance is a linear combination of unknown parameter curves and functions
of Y ◦t−1,n, i.e.

Xt,n = µ(Y ◦t−1,n, θ0(t/n)) + σ(Y ◦t−1,n, θ0(t/n))εt, t = 1, ..., n,

with some measurable µ, σ. In this case, the likelihood (4) with y◦ =
(y1, ..., yr)

′ for y = (y1, y2, y3, ...) takes the form

(37) `(x, y, θ) :=
1

2
log
(
2πσ(y◦, θ)2

)
+

1

2

(x− µ(y◦, θ)

σ(y◦, θ)

)2
.

We adapt a result from [13] (Example 5.1 therein) which deals with µ, σ2

having a linear structure in the parameters. The following example covers
tvAR-, tvTAR and tvARCH processes.

Proposition 4.3 (Time-varying recursively defined time series models).
Consider the recursion

(38) Xt,n = µ(Y ◦t−1,n, θ0(t/n)) + σ(Y ◦t−1,n, θ0(t/n))εt,

where θ0 = (α1, . . . , αk, β0, . . . , βl)
′ and

µ(y, θ) :=
k∑
i=1

αimi(y), σ(y, θ) :=
( l∑
i=0

βiνi(y)
)1/2

,

with some functions m = (m1, ...,mk) : Rr → Rk, ν = (ν0, ..., νl) : Rr →
Rl+1
≥0 . Assume that
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1. εi are i.i.d. with Eεi = 0, Eε2
i = 1 and Eεqi <∞ for all q > 0.

2. For all θ ∈ Θ, the sets

{m1(Ỹ ◦0 (θ)), . . . ,mk(Ỹ
◦

0 (θ))}, {ν0(Ỹ ◦0 (θ)), . . . , νl(Ỹ
◦

0 (θ))}

are (separately) linearly independent in L2.
3. There exist (κij) ∈ Rk×r≥0 , (ρij) ∈ R(l+1)×r

≥0 such that for all i:

(39) sup
y 6=y′

|mi(y)−mi(y
′)|

|y − y′|κi·,1
≤ 1, sup

y 6=y′

|
√
νi(y)−

√
νi(y′)|

|y − y′|ρi·,1
≤ 1.

Let νmin > 0 be some constant such that for all y ∈ Rr, ν0(y) ≥ νmin.
With some βmin > 0, choose Θ̃ ⊂ Rk ×Rl+1

≥βmin such that for all q > 0,

(40)
p∑
j=1

(
sup
θ∈Θ̃

k∑
i=1

|αi|κij + ‖ε0‖q · sup
θ∈Θ̃

l∑
i=0

√
βiρij

)
< 1.

4. Assumption 3.3(1) is valid with some Θ ⊂ Θ̃.

Then Assumptions 2.1, 3.1 and 3.3 are fulfilled for ` chosen to be proportional
to the negative log Gaussian conditional likelihood (37) with M = 3. In the
special case σ(x, θ)2 ≡ β0, one can choose M = 2.
With the shortcuts m = m(Ỹ ◦0 (θ)), ν = ν(Ỹ ◦0 (θ)) it holds that

V (θ) =

(
Emm′

〈β,ν〉 0

0 E νν′

2〈β,ν〉2

)
,(41)

I(θ) =

 Emm′

〈β,ν〉 E[ε3
0] · E mν′

2〈β,ν〉3/2

E[ε3
0] · E νm′

2〈β,ν〉3/2
Eε40−1

4 · E νν′

2〈β,ν〉2 ,

 .(42)

If additionally, Assumption 3.7(1) is fulfilled and mi, νi are twice continu-
ously differentiable such that for all j1, j2 = 1, . . . , r and all i,

sup
y 6=y′

|∂yj1∂yj2mi(y)− ∂yj1∂yj2mi(y
′)|

|y − y′|1
< ∞,(43)

sup
y 6=y′

|∂yj1∂yj2νi(y)− ∂yj1∂yj2νi(y
′)|

|y − y′|1
< ∞,(44)

then Assumption 3.7 is fulfilled for ` from (37).
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Remark 4.4. 1. If (i) Eζ3
0 = 0, or (ii) µ(z, θ) ≡ 0 or (iii) σ(z, θ) ≡

β0 and Em(Ỹ ◦0 (θ)) = 0, then

I(θ) =
(
Ik 0
0 (Eε40−1)Il+1/2

)
· V (θ),

where Id denotes the d-dimensional identity matrix. If additionally
Eε4

0 = 3 (as it is the case for ε0 having a standard normal distribu-
tion), we have I(θ) = V (θ).

2. Note that in many special cases (for instance tvAR or tvARCH pro-
cesses) where mi, νi have simple forms and explicit representations of
the processes are available, the restrictive conditions on the parame-
ter space (40) can be relaxed by rewriting the recursion (38) as a r-
dimensional recursion with only one lag and using matrix arguments.

3. In the tvARCH case (or, more general in cases where σ(z, θ) is depen-
dent on z in a nontrivial way), condition (40) can only be satisfied if
there exists Cε > 0 such that ‖ε0‖q ≤ Cε for all q ≥ 1. By Markov’s
inequality, this directly implies that ε0 has to be bounded almost surely,
that ist, |ε0| ≤ Cε a.s.

4. Explicit formulas for the bias (20) are available in the Supplementary
Material Supplement A, Lemma 5.2.

A simulation study. Here, we study the behavior of the presented cross
validation algorithm for different time series models. We assume that εt is
standard Gaussian distributed, and consider

(a) tvAR(1) processesXt,n = α( tn)Xt−1,n+σ( tn)εt, with α(u) = 0.9 sin(2πu)
and σ(u) = 0.3 sin(2πu) + 0.5.

(b) tvMA(1) processes Xt,n = σ( tn)εt + α( tn)σ( t−1
n )εt−1, with α(u) =

0.9 sin(2πu) and σ(u) = 0.3 sin(2πu) + 0.5.
(c) tvARCH(1) processesXt,n =

√
α1( tn) + α2( tn)X2

t−1,n·εt−1, with α1(u) =

0.2 sin(2πu) + 0.4 and α2(u) = 0.1 sin(2πu) + 0.2.
(d) tvTAR(1) processes Xt,n = α1( tn)X+

t−1,n + α2( tn)X−t−1,n + εt, with
α1(u) = 0.4 sin(2πu) and α2(u) = 0.5 cos(2πu) and y+ := max{y, 0},
y− := max{−y, 0} for real numbers y.

We performed a Monte Carlo study by generating in each case N =
2000 realizations of time series with length n ∈ {200, 500}. For estima-
tion, we used the weight function w(·) = 1[0.01,0.99](·) which already ex-
cludes most of the boundary effects and the Epanechnikov kernel K(x) =
3
2(1− (2x)2)1[− 1

2
, 1
2

](x).

We choseHn = [0.01, 1.0] and calculated the cross-validation bandwidth ĥ,
the ao-bandwidth h0 from Theorem 3.9 (for models (a)-(c), model (d) does
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not satisfy the smoothness conditions) and the optimal theoretical band-
width

h∗ = argminh∈Hn dA(θ̂h, θ0).

Note that ĥ, h∗ depend on the current realization while h0 is deterministic
and fixed. h∗ and h0 depend on the unknown true curve θ0(·) and are un-
available in practice. More explicit formulas for the bias term (20) which
is necessary to calculate h0 can be found in the Supplementary Material
Supplement A, Section 6.

Figure 1 shows the results ĥ, h∗ for the four models respectively. The
histograms show the chosen cross validation bandwidths ĥ, the bandwidth
h0 is marked via a black vertical line, and the dashed normal distribution is
the theoretical expected limit distribution of ĥ given by Theorem 3.10. The
boxplots show the achieved values of dA(θ̂h, θ0) for the different selectors
h ∈ {ĥ, h0, h

∗} (labeled as ’CV’, ’Plugin’ and ’Optimal’). Each box contains
50% while the whiskers contain 90% of the values of dA(θ̂h, θ0). It can be
seen that the cross validation procedure works well even for the case of
a time series length of only n = 200. Compared to the theoretical limit
distribution of ĥ given by Theorem 3.10 we observe that ĥ seems to be
biased, tending to be slightly greater than h0, depending on the variance
of the limit distribution. The bias reduces significantly if n increases. For
the models (a),(d) we observe that the distances dA attained by the cross
validation approach are nearly as good as the distances obtained by the
optimal selector h∗ which is remarkable. For the models (b) and (c) the
values of dA associated to ĥ have a higher variance. This can be explained
by the higher variance of the maximum likelihood estimators θ̂h in these
models; a theoretical justification can be found in the corresponding limit
distribution of ĥ given in Theorem 3.10. In all cases, the distances produced
by the estimator based on the cross validation procedure are of course greater
in average, but they still look quite satisfying in our opinion.
Note that in case of a more general theory for derivative processes (see [6]
for a discussion) it is possible to show similar results as given in Theorems
3.9, 3.10 for the TAR process (d).
Model misspecifications: We observed in simulations that the perfor-

mance of the cross validation procedure is robust against the distribution of
εt, leading to similar results even if εt is uniformly, exponentially or Pareto
distributed (meaning that the moment conditions from Assumption 2.1 are
violated).

Due to the fact that our cross validation method is a natural generalization
of the version for iid regression it works even well if the underlying model
itself is misspecified. In the following we estimate parameters with a Gaussian
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Figure 1. Simulation results for the models (a),(b),(c),(d) for time series lengths n = 200
(left) and n = 500 (right) and N = 2000 replications. The left plot shows a histogram of the
chosen cross validation bandwidths ĥ, the vertical line therein represents the asymptotically
optimal bandwidth h0. The right box plots show the values of dA(θ̂h, θ0) achieved for h ∈
{ĥ, h0, h

∗}.

likelihood which assumes that the time series model follows a tvAR(1) model
Xt,n = αms(t/n)Xt−1,n + σms(t/n)εt, but in fact the underlying model is
either tvMA (b) or tvARCH (c). The cross validation method then tries
to estimate the minimizer θms0 (u) = (αms(u), σms(u))′ of θ 7→ L(u, θ), i.e.
αms(u) = c(1,u)

c(0,u) and σms(u) =
( c(0)2−c(1)2

c(0)

)1/2 with the covariances c(k, u) :=

E[X̃0(θ0(u))X̃k(θ0(u))]:
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model αms(u) σms(u)

tvMA α(u)
1+α(u)2

(1+α(u)2+α(u)4

1+α(u)2

)1/2 · σ(u)

tvARCH 0
( α1(u)

1−α2(u)

)1/2
To compare the distances, we use dA(θ̂h(u), θms0 (u)) with V from the tvAR(1)
model. The simulations are performed in the same way as for the correctly
specified case above. In Figure 2 it is seen that even in the misspecified case
the bandwidth selector ĥ produces reasonable estimators which are compa-
rable with the optimal bandwidth choice h∗ in the case of tvMA estimators
and still satisfying in the tvARCH case (note that a lot of information is lost
due to the fact that αms(u) ≡ 0 in this case).
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Figure 2. Simulation results in the misspecified case: The underlying processes are either
(b),(c) but for the estimation it is assumed that a tvAR(1) process is present.

5. Concluding remarks. In this paper we have introduced a data
adaptive bandwidth selector via cross validation which is applicable for a
large class of locally stationary processes. An important property of the
method is the fact that it does not involve any tuning parameters.

In simulations we have seen that the proposed cross validation method
yields nearly optimal bandwidth choices with respect to an Kullback-Leibler
type distance measure in the case of correctly specified models and still leads
to satisfying results in the case of model misspecification. It remains an
open question if a similar cross validation procedure can be defined which is
asymptotically optimal with respect to a simple quadratic distance measure
(i.e. without a weighting matrix) which would then lead to estimates of θ0
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which do not optimize the prediction properties of the associated model but
the estimation quality of the parameter curve θ0 itself.

We worked out the convergence rate of ĥ towards the asymptotically
optimal bandwidth h0, which is ĥ = h0 + Op(n

−3/10), and showed that
n3/10(ĥ − h0)

d→ N(0, σ2
ĥ
) with some explicit formula for σ2

ĥ
. From this it

could be seen that the convergence rate in practice is strongly dependent
on the underlying model; σ2

ĥ
can be large if θ0 is hard to estimate. This

raises the question if there are improved crossvalidation methods like [3] (via
Fourier transform) or [10] (via presmoothing) proved in the iid kernel den-
sity estimation case that attain the optimal rate of n1/2 if further smoothness
assumptions on θ0 are supposed.

We mention that it is not hard to generalize the proposed method and
the proofs to multidimensional time series which may be of interest in many
practical applications.

An interesting open problem is the adaptive estimation in time series mod-
els with several parameter curves coming from different smoothness class, in
particular since these curves are not observed separately but via a single
time series.

Let us point out the fact that cross validation procedures in general are
not stable if applied locally. Thus it remains an open question to find an
local adaptive bandwidth selector.
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